{{alias}}( x[, ...y[, options]] ) Computes Levene's test for equal variances. Parameters ---------- x: Array Measured values. y: ...Array (optional) Measured values. options: Object (optional) Options. options.alpha: number (optional) Number in the interval `[0,1]` giving the significance level of the hypothesis test. Default: `0.05`. options.groups: Array (optional) Array of group indicators. Returns ------- out: Object Test result object. out.alpha: number Significance level. out.rejected: boolean Test decision. out.pValue: number p-value of the test. out.statistic: number Value of test statistic. out.method: string Name of test. out.df: Array Degrees of freedom. out.print: Function Function to print formatted output. Examples -------- // Data from Hollander & Wolfe (1973), p. 116: > var x = [ 2.9, 3.0, 2.5, 2.6, 3.2 ]; > var y = [ 3.8, 2.7, 4.0, 2.4 ]; > var z = [ 2.8, 3.4, 3.7, 2.2, 2.0 ]; > var out = {{alias}}( x, y, z ) > var arr = [ 2.9, 3.0, 2.5, 2.6, 3.2, ... 3.8, 2.7, 4.0, 2.4, ... 2.8, 3.4, 3.7, 2.2, 2.0 ... ]; > var groups = [ ... 'a', 'a', 'a', 'a', 'a', ... 'b', 'b', 'b', 'b', ... 'c', 'c', 'c', 'c', 'c' ... ]; > out = {{alias}}( arr, { 'groups': groups } ) See Also --------