# incrmvariance > Compute a moving [unbiased sample variance][sample-variance] incrementally.
For a window of size `W`, the [unbiased sample variance][sample-variance] is defined as
Equation for the unbiased sample variance.
## Usage ```javascript var incrmvariance = require( '@stdlib/stats/incr/mvariance' ); ``` #### incrmvariance( window\[, mean] ) Returns an accumulator `function` which incrementally computes a moving [unbiased sample variance][sample-variance]. The `window` parameter defines the number of values over which to compute the moving [unbiased sample variance][sample-variance]. ```javascript var accumulator = incrmvariance( 3 ); ``` If the mean is already known, provide a `mean` argument. ```javascript var accumulator = incrmvariance( 3, 5.0 ); ``` #### accumulator( \[x] ) If provided an input value `x`, the accumulator function returns an updated [unbiased sample variance][sample-variance]. If not provided an input value `x`, the accumulator function returns the current [unbiased sample variance][sample-variance]. ```javascript var accumulator = incrmvariance( 3 ); var s2 = accumulator(); // returns null // Fill the window... s2 = accumulator( 2.0 ); // [2.0] // returns 0.0 s2 = accumulator( 1.0 ); // [2.0, 1.0] // returns 0.5 s2 = accumulator( 3.0 ); // [2.0, 1.0, 3.0] // returns 1.0 // Window begins sliding... s2 = accumulator( -7.0 ); // [1.0, 3.0, -7.0] // returns 28.0 s2 = accumulator( -5.0 ); // [3.0, -7.0, -5.0] // returns 28.0 s2 = accumulator(); // returns 28.0 ```
## Notes - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. - As `W` values are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var incrmvariance = require( '@stdlib/stats/incr/mvariance' ); var accumulator; var v; var i; // Initialize an accumulator: accumulator = incrmvariance( 5 ); // For each simulated datum, update the moving unbiased sample variance... for ( i = 0; i < 100; i++ ) { v = randu() * 100.0; accumulator( v ); } console.log( accumulator() ); ```