/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); // MAIN // /** * Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. * * ## Method * * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). * * ## References * * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). * * @param {PositiveInteger} N - number of indexed elements * @param {number} correction - degrees of freedom adjustment * @param {Float32Array} x - input array * @param {integer} stride - stride length * @param {NonNegativeInteger} offset - starting index * @returns {number} variance * * @example * var Float32Array = require( '@stdlib/array/float32' ); * var floor = require( '@stdlib/math/base/special/floor' ); * * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); * var N = floor( x.length / 2 ); * * var v = snanvarianceyc( N, 1, x, 2, 1 ); * // returns 6.25 */ function snanvarianceyc( N, correction, x, stride, offset ) { var sum; var ix; var nc; var S; var v; var d; var n; var i; if ( N <= 0 ) { return NaN; } if ( N === 1 || stride === 0 ) { v = x[ offset ]; if ( v === v && N-correction > 0.0 ) { return 0.0; } return NaN; } ix = offset; // Find the first non-NaN element... for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { break; } ix += stride; } if ( i === N ) { return NaN; } ix += stride; sum = v; S = 0.0; i += 1; n = 1; for ( i; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { n += 1; sum = float64ToFloat32( sum + v ); d = float64ToFloat32( float64ToFloat32(n*v) - sum ); S = float64ToFloat32( S + float64ToFloat32( float64ToFloat32( float64ToFloat32(1.0/(n*(n-1))) * d ) * d ) ); // eslint-disable-line max-len } ix += stride; } nc = n - correction; if ( nc <= 0.0 ) { return NaN; } return float64ToFloat32( S / nc ); } // EXPORTS // module.exports = snanvarianceyc;