/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var nansumpw = require( './nansumpw.js' ); // VARIABLES // var WORKSPACE = [ 0.0, 0 ]; // MAIN // /** * Computes the variance of a strided array ignoring `NaN` values and using a two-pass algorithm. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param {PositiveInteger} N - number of indexed elements * @param {number} correction - degrees of freedom adjustment * @param {NumericArray} x - input array * @param {integer} stride - stride length * @returns {number} variance * * @example * var x = [ 1.0, -2.0, NaN, 2.0 ]; * * var v = nanvariancepn( x.length, 1, x, 1 ); * // returns ~4.3333 */ function nanvariancepn( N, correction, x, stride ) { var mu; var ix; var M2; var nc; var M; var d; var v; var n; var i; if ( N <= 0 ) { return NaN; } if ( N === 1 || stride === 0 ) { v = x[ 0 ]; if ( v === v && N-correction > 0.0 ) { return 0.0; } return NaN; } if ( stride < 0 ) { ix = (1-N) * stride; } else { ix = 0; } // Compute an estimate for the mean... WORKSPACE[ 0 ] = 0.0; WORKSPACE[ 1 ] = 0; nansumpw( N, WORKSPACE, x, stride, ix ); n = WORKSPACE[ 1 ]; nc = n - correction; if ( nc <= 0.0 ) { return NaN; } mu = WORKSPACE[ 0 ] / n; // Compute the variance... M2 = 0.0; M = 0.0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { d = v - mu; M2 += d * d; M += d; } ix += stride; } return (M2/nc) - ((M/n)*(M/nc)); } // EXPORTS // module.exports = nanvariancepn;