/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MAIN // /** * Computes the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param {PositiveInteger} N - number of indexed elements * @param {NumericArray} x - input array * @param {integer} stride - stride length * @param {NonNegativeInteger} offset - starting index * @returns {number} arithmetic mean * * @example * var floor = require( '@stdlib/math/base/special/floor' ); * * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ]; * var N = floor( x.length / 2 ); * * var v = nanmeanpn( N, x, 2, 1 ); * // returns 1.25 */ function nanmeanpn( N, x, stride, offset ) { var ix; var v; var s; var t; var n; var i; if ( N <= 0 ) { return NaN; } if ( N === 1 || stride === 0 ) { return x[ offset ]; } ix = offset; // Compute an estimate for the mean... s = 0.0; n = 0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { n += 1; s += v; } ix += stride; } if ( n === 0 ) { return NaN; } s /= n; // Compute an error term... ix = offset; t = 0.0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { t += v - s; } ix += stride; } return s + (t/n); } // EXPORTS // module.exports = nanmeanpn;