/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var floor = require( '@stdlib/math/base/special/floor' ); // VARIABLES // // Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.): var BLOCKSIZE = 128; // MAIN // /** * Computes the sum of a double-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation. * * ## Method * * - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`. * * ## References * * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050). * * @private * @param {PositiveInteger} N - number of indexed elements * @param {NumericArray} out - two-element output array whose first element is the accumulated sum and whose second element is the accumulated number of summed values * @param {Float64Array} x - input array * @param {integer} stride - stride length * @param {NonNegativeInteger} offset - starting index * @returns {NumericArray} output array * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var floor = require( '@stdlib/math/base/special/floor' ); * * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); * var N = floor( x.length / 2 ); * * var out = [ 0.0, 0 ]; * var v = dnansumpw( N, out, x, 2, 1 ); * // returns [ 5.0, 4 ] */ function dnansumpw( N, out, x, stride, offset ) { var ix; var s0; var s1; var s2; var s3; var s4; var s5; var s6; var s7; var M; var s; var n; var v; var i; ix = offset; if ( N < 8 ) { // Use simple summation... s = 0.0; n = 0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { s += v; n += 1; } ix += stride; } out[ 0 ] += s; out[ 1 ] += n; return out; } if ( N <= BLOCKSIZE ) { // Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)... s0 = 0.0; s1 = 0.0; s2 = 0.0; s3 = 0.0; s4 = 0.0; s5 = 0.0; s6 = 0.0; s7 = 0.0; n = 0; M = N % 8; for ( i = 0; i < N-M; i += 8 ) { v = x[ ix ]; if ( v === v ) { s0 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s1 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s2 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s3 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s4 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s5 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s6 += v; n += 1; } ix += stride; v = x[ ix ]; if ( v === v ) { s7 += v; n += 1; } ix += stride; } // Pairwise sum the accumulators: s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7)); // Clean-up loop... for ( i; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { s += v; n += 1; } ix += stride; } out[ 0 ] += s; out[ 1 ] += n; return out; } // Recurse by dividing by two, but avoiding non-multiples of unroll factor... n = floor( N/2 ); n -= n % 8; return dnansumpw( n, out, x, stride, ix ) + dnansumpw( N-n, out, x, stride, ix+(n*stride) ); // eslint-disable-line max-len } // EXPORTS // module.exports = dnansumpw;