/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var factory = require( './factory.js' ); var randuint32 = require( './rand_uint32.js' ); // MAIN // /** * Generates a pseudorandom integer on the interval \\( [1,2^{32}-1) \\). * * ## Method * * - When generating normalized double-precision floating-point numbers, we first generate two pseudorandom integers \\( x \\) and \\( y \\) on the interval \\( [1,2^{32}-1) \\) for a combined \\( 64 \\) random bits. * * - We would like \\( 53 \\) random bits to generate a 53-bit precision integer and, thus, want to discard \\( 11 \\) of the generated bits. * * - We do so by discarding \\( 5 \\) bits from \\( x \\) and \\( 6 \\) bits from \\( y \\). * * - Accordingly, \\( x \\) contains \\( 27 \\) random bits, which are subsequently shifted left \\( 26 \\) bits (multiplied by \\( 2^{26} \\), and \\( y \\) contains \\( 26 \\) random bits to fill in the lower \\( 26 \\) bits. When summed, they combine to comprise \\( 53 \\) random bits of a double-precision floating-point integer. * * - As an example, suppose, for the sake of argument, the 32-bit PRNG generates the maximum unsigned 32-bit integer \\( 2^{32}-1 \\) twice in a row. Then, * * ```javascript * x = 4294967295 >>> 5; // 00000111111111111111111111111111 * y = 4294967295 >>> 6; // 00000011111111111111111111111111 * ``` * * Multiplying \\( x \\) by \\( 2^{26} \\) returns \\( 9007199187632128 \\), which, in binary, is * * ```binarystring * 0 10000110011 11111111111111111111 11111100000000000000000000000000 * ``` * * Adding \\( y \\) yields \\( 9007199254740991 \\) (the maximum "safe" double-precision floating-point integer value), which, in binary, is * * ```binarystring * 0 10000110011 11111111111111111111 11111111111111111111111111111111 * ``` * * - Similarly, suppose the 32-bit PRNG generates the following values * * ```javascript * x = 1 >>> 5; // 0 => 00000000000000000000000000000000 * y = 64 >>> 6; // 1 => 00000000000000000000000000000001 * ``` * * Multiplying \\( x \\) by \\( 2^{26} \\) returns \\( 0 \\), which, in binary, is * * ```binarystring * 0 00000000000 00000000000000000000 00000000000000000000000000000000 * ``` * * Adding \\( y \\) yields \\( 1 \\), which, in binary, is * * ```binarystring * 0 01111111111 00000000000000000000 00000000000000000000000000000000 * ``` * * - As different combinations of \\( x \\) and \\( y \\) are generated, different combinations of double-precision floating-point exponent and significand bits will be toggled, thus generating pseudorandom double-precision floating-point numbers. * * * ## References * * - Matsumoto, Makoto, and Takuji Nishimura. 1998. "Mersenne Twister: A 623-dimensionally Equidistributed Uniform Pseudo-random Number Generator." _ACM Transactions on Modeling and Computer Simulation_ 8 (1). New York, NY, USA: ACM: 3–30. doi:[10.1145/272991.272995][@matsumoto:1998a]. * - Harase, Shin. 2017. "Conversion of Mersenne Twister to double-precision floating-point numbers." _ArXiv_ abs/1708.06018 (September). . * * [@matsumoto:1998a]: https://doi.org/10.1145/272991.272995 * * * @function mt19937 * @type {PRNG} * @returns {PositiveInteger} pseudorandom integer * * @example * var v = mt19937(); * // returns */ var mt19937 = factory({ 'seed': randuint32() }); // EXPORTS // module.exports = mt19937;