# dnansumkbn > Calculate the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.
## Usage ```javascript var dnansumkbn = require( '@stdlib/blas/ext/base/dnansumkbn' ); ``` #### dnansumkbn( N, x, stride ) Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); var N = x.length; var v = dnansumkbn( N, x, 1 ); // returns 1.0 ``` The function has the following parameters: - **N**: number of indexed elements. - **x**: input [`Float64Array`][@stdlib/array/float64]. - **stride**: index increment for `x`. The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the sum of every other element in `x`, ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] ); var N = floor( x.length / 2 ); var v = dnansumkbn( N, x, 2 ); // returns 5.0 ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var N = floor( x0.length / 2 ); var v = dnansumkbn( N, x1, 2 ); // returns 5.0 ``` #### dnansumkbn.ndarray( N, x, stride, offset ) Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm and alternative indexing semantics. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); var N = x.length; var v = dnansumkbn.ndarray( N, x, 1, 0 ); // returns 1.0 ``` The function has the following additional parameters: - **offset**: starting index for `x`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var N = floor( x.length / 2 ); var v = dnansumkbn.ndarray( N, x, 2, 1 ); // returns 5.0 ```
## Notes - If `N <= 0`, both functions return `0.0`.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var Float64Array = require( '@stdlib/array/float64' ); var dnansumkbn = require( '@stdlib/blas/ext/base/dnansumkbn' ); var x; var i; x = new Float64Array( 10 ); for ( i = 0; i < x.length; i++ ) { if ( randu() < 0.2 ) { x[ i ] = NaN; } else { x[ i ] = round( randu()*100.0 ); } } console.log( x ); var v = dnansumkbn( x.length, x, 1 ); console.log( v ); ```
* * *
## References - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106][@neumaier:1974a].