# itervariance > Compute the [unbiased sample variance][sample-variance] over all [iterated][mdn-iterator-protocol] values.
The [unbiased sample variance][sample-variance] is defined as
Equation for the unbiased sample variance.
## Usage ```javascript var itervariance = require( '@stdlib/stats/iter/variance' ); ``` #### itervariance( iterator\[, mean] ) Computes the [unbiased sample variance][sample-variance] over all [iterated][mdn-iterator-protocol] values. ```javascript var array2iterator = require( '@stdlib/array/to-iterator' ); var arr = array2iterator( [ 2.0, 1.0, 3.0 ] ); var s2 = itervariance( arr ); // returns 1.0 ``` If the mean is already known, provide a `mean` argument. ```javascript var array2iterator = require( '@stdlib/array/to-iterator' ); var arr = array2iterator( [ 2.0, 1.0, 3.0 ] ); var s2 = itervariance( arr, 2.0 ); // returns ~0.67 ```
## Notes - If an iterated value is non-numeric (including `NaN`), the returned [`iterator`][mdn-iterator-protocol] returns `NaN`. If non-numeric iterated values are possible, you are advised to provide an [`iterator`][mdn-iterator-protocol] which type checks and handles non-numeric values accordingly.
## Examples ```javascript var runif = require( '@stdlib/random/iter/uniform' ); var itervariance = require( '@stdlib/stats/iter/variance' ); // Create an iterator for generating uniformly distributed pseudorandom numbers: var rand = runif( -10.0, 10.0, { 'seed': 1234, 'iter': 100 }); // Compute the unbiased sample variance: var s2 = itervariance( rand ); // returns console.log( 'Variance: %d.', s2 ); ```