# dsnanmean
> Calculate the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
The [arithmetic mean][arithmetic-mean] is defined as
## Usage
```javascript
var dsnanmean = require( '@stdlib/stats/base/dsnanmean' );
```
#### dsnanmean( N, x, stride )
Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x`, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
```javascript
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dsnanmean( N, x, 1 );
// returns ~0.3333
```
The function has the following parameters:
- **N**: number of indexed elements.
- **x**: input [`Float32Array`][@stdlib/array/float32].
- **stride**: index increment for `x`.
The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );
var v = dsnanmean( N, x, 2 );
// returns 1.25
```
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = dsnanmean( N, x1, 2 );
// returns 1.25
```
#### dsnanmean.ndarray( N, x, stride, offset )
Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation and alternative indexing semantics.
```javascript
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dsnanmean.ndarray( N, x, 1, 0 );
// returns ~0.33333
```
The function has the following additional parameters:
- **offset**: starting index for `x`.
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );
var v = dsnanmean.ndarray( N, x, 2, 1 );
// returns 1.25
```
## Notes
- If `N <= 0`, both functions return `NaN`.
- If every indexed element is `NaN`, both functions return `NaN`.
- Accumulated intermediate values are stored as double-precision floating-point numbers.
## Examples
```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var dsnanmean = require( '@stdlib/stats/base/dsnanmean' );
var x;
var i;
x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
}
console.log( x );
var v = dsnanmean( x.length, x, 1 );
console.log( v );
```
[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
[@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray