# dsemwd > Calculate the [standard error of the mean][standard-error] of a double-precision floating-point strided array using Welford's algorithm.
The [standard error of the mean][standard-error] of a finite size sample of size `n` is given by
Equation for the standard error of the mean.
where `σ` is the population [standard deviation][standard-deviation]. Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. In this scenario, one must use a sample [standard deviation][standard-deviation] to compute an estimate for the [standard error of the mean][standard-error]
Equation for estimating the standard error of the mean.
where `s` is the sample [standard deviation][standard-deviation].
## Usage ```javascript var dsemwd = require( '@stdlib/stats/base/dsemwd' ); ``` #### dsemwd( N, correction, x, stride ) Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array `x` using Welford's algorithm. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); var N = x.length; var v = dsemwd( N, 1, x, 1 ); // returns ~1.20185 ``` The function has the following parameters: - **N**: number of indexed elements. - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). - **x**: input [`Float64Array`][@stdlib/array/float64]. - **stride**: index increment for `x`. The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard error of the mean][standard-error] of every other element in `x`, ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); var N = floor( x.length / 2 ); var v = dsemwd( N, 1, x, 2 ); // returns 1.25 ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var N = floor( x0.length / 2 ); var v = dsemwd( N, 1, x1, 2 ); // returns 1.25 ``` #### dsemwd.ndarray( N, correction, x, stride, offset ) Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array using Welford's algorithm and alternative indexing semantics. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); var N = x.length; var v = dsemwd.ndarray( N, 1, x, 1, 0 ); // returns ~1.20185 ``` The function has the following additional parameters: - **offset**: starting index for `x`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard error of the mean][standard-error] for every other value in `x` starting from the second value ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var N = floor( x.length / 2 ); var v = dsemwd.ndarray( N, 1, x, 2, 1 ); // returns 1.25 ```
## Notes - If `N <= 0`, both functions return `NaN`. - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var Float64Array = require( '@stdlib/array/float64' ); var dsemwd = require( '@stdlib/stats/base/dsemwd' ); var x; var i; x = new Float64Array( 10 ); for ( i = 0; i < x.length; i++ ) { x[ i ] = round( (randu()*100.0) - 50.0 ); } console.log( x ); var v = dsemwd( x.length, 1, x, 1 ); console.log( v ); ```
* * *
## References - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022][@welford:1962a]. - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961][@vanreeken:1968a].