# srsqrt > Compute the [reciprocal square root][@stdlib/math/base/special/rsqrtf] for each element in a single-precision floating-point strided array.
## Usage ```javascript var srsqrt = require( '@stdlib/math/strided/special/srsqrt' ); ``` #### srsqrt( N, x, strideX, y, strideY ) Computes the [reciprocal square root][@stdlib/math/base/special/rsqrtf] for each element in a single-precision floating-point strided array `x` and assigns the results to elements in a single-precision floating-point strided array `y`. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, 4.0, 9.0, 12.0, 24.0 ] ); // Perform operation in-place: srsqrt( x.length, x, 1, x, 1 ); // x => [ 1.0, 0.5, ~0.333, ~0.289, ~0.204 ] ``` The function accepts the following arguments: - **N**: number of indexed elements. - **x**: input [`Float32Array`][@stdlib/array/float32]. - **strideX**: index increment for `x`. - **y**: output [`Float32Array`][@stdlib/array/float32]. - **strideY**: index increment for `y`. The `N` and `stride` parameters determine which elements in `x` and `y` are accessed at runtime. For example, to index every other value in `x` and to index the first `N` elements of `y` in reverse order, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] ); var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); srsqrt( 3, x, 2, y, -1 ); // y => [ ~0.204, ~0.333, 1.0, 0.0, 0.0, 0.0 ] ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][@stdlib/array/float32] views. ```javascript var Float32Array = require( '@stdlib/array/float32' ); // Initial arrays... var x0 = new Float32Array( [ 1.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] ); var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); // Create offset views... var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element srsqrt( 3, x1, -2, y1, 1 ); // y0 => [ 0.0, 0.0, 0.0, 0.125, ~0.289, 0.5 ] ``` #### srsqrt.ndarray( N, x, strideX, offsetX, y, strideY, offsetY ) Computes the [reciprocal square root][@stdlib/math/base/special/rsqrtf] for each element in a single-precision floating-point strided array `x` and assigns the results to elements in a single-precision floating-point strided array `y` using alternative indexing semantics. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, 4.0, 9.0, 12.0, 24.0 ] ); var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] ); srsqrt.ndarray( x.length, x, 1, 0, y, 1, 0 ); // y => [ 1.0, 0.5, ~0.333, ~0.289, ~0.204 ] ``` The function accepts the following additional arguments: - **offsetX**: starting index for `x`. - **offsetY**: starting index for `y`. While [`typed array`][@stdlib/array/float32] views mandate a view offset based on the underlying `buffer`, the `offsetX` and `offsetY` parameters support indexing semantics based on starting indices. For example, to index every other value in `x` starting from the second value and to index the last `N` elements in `y`, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] ); var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); srsqrt.ndarray( 3, x, 2, 1, y, -1, y.length-1 ); // y => [ 0.0, 0.0, 0.0, 0.125, ~0.289, 0.5 ] ```
## Examples ```javascript var uniform = require( '@stdlib/random/base/uniform' ); var Float32Array = require( '@stdlib/array/float32' ); var srsqrt = require( '@stdlib/math/strided/special/srsqrt' ); var x = new Float32Array( 10 ); var y = new Float32Array( 10 ); var i; for ( i = 0; i < x.length; i++ ) { x[ i ] = uniform( 0.0, 200.0 ); } console.log( x ); console.log( y ); srsqrt.ndarray( x.length, x, 1, 0, y, -1, y.length-1 ); console.log( y ); ```
* * *
## C APIs
### Usage ```c #include "stdlib/math/strided/special/srsqrt.h" ``` #### stdlib_strided_srsqrt( N, \*X, strideX, \*Y, strideY ) Computes the reciprocal square root for each element in a single-precision floating-point strided array `X` and assigns the results to elements in a single-precision floating-point strided array `Y`. ```c #include float X[] = { 1.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 }; float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; int64_t N = 4; stdlib_strided_srsqrt( N, X, 2, Y, 2 ); ``` The function accepts the following arguments: - **N**: `[in] int64_t` number of indexed elements. - **X**: `[in] float*` input array. - **strideX**: `[in] int64_t` index increment for `X`. - **Y**: `[out] float*` output array. - **strideY**: `[in] int64_t` index increment for `Y`. ```c void stdlib_strided_srsqrt( const int64_t N, const float *X, const int64_t strideX, float *Y, const int64_t strideY ); ```
### Examples ```c #include "stdlib/math/strided/special/srsqrt.h" #include #include int main() { // Create an input strided array: float X[] = { 1.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 }; // Create an output strided array: float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; // Specify the number of elements: int64_t N = 4; // Specify the stride lengths: int64_t strideX = 2; int64_t strideY = 2; // Compute the results: stdlib_strided_srsqrt( N, X, strideX, Y, strideY ); // Print the results: for ( int i = 0; i < 8; i++ ) { printf( "Y[ %i ] = %f\n", i, Y[ i ] ); } } ```