# inv > Compute the [multiplicative inverse][multiplicative-inverse] of a double-precision floating-point number.
The [multiplicative inverse][multiplicative-inverse] (or **reciprocal**) is defined as
Multiplicative inverse
## Usage ```javascript var inv = require( '@stdlib/math/base/special/inv' ); ``` #### inv( x ) Computes the [multiplicative inverse][multiplicative-inverse] of a double-precision floating-point number `x`. ```javascript var v = inv( -1.0 ); // returns -1.0 v = inv( 2.0 ); // returns 0.5 v = inv( 0.0 ); // returns Infinity v = inv( -0.0 ); // returns -Infinity v = inv( NaN ); // returns NaN ```
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var inv = require( '@stdlib/math/base/special/inv' ); var x; var i; for ( i = 0; i < 100; i++ ) { x = round( randu()*100.0 ) - 50.0; console.log( 'inv(%d) = %d', x, inv( x ) ); } ```
* * *
## C APIs
### Usage ```c #include "stdlib/math/base/special/inv.h" ``` #### stdlib_base_inv( x ) Computes the multiplicative inverse of a double-precision floating-point number. ```c double y = stdlib_base_inv( 2.0 ); // returns 0.5 ``` The function accepts the following arguments: - **x**: `[in] double` input value. ```c double stdlib_base_inv( const double x ); ```
### Examples ```c #include "stdlib/math/base/special/inv.h" #include int main() { double x[] = { 3.0, 4.0, 5.0, 12.0 }; double y; int i; for ( i = 0; i < 4; i++ ) { y = stdlib_base_inv( x[ i ] ); printf( "inv(%lf) = %lf\n", x[ i ], y ); } } ```