# exp > Compute the [exponential][exponential-function] function of a complex number.
The [exponential][exponential-function] function of a complex number is defined as
Complex exponential function
## Usage ```javascript var cexp = require( '@stdlib/math/base/special/cexp' ); ``` #### cexp( \[out,] re, im ) Evaluates the [exponential][exponential-function] function with a `complex` argument comprised of a **real** component `re` and an **imaginary** component `im`. ```javascript var v = cexp( 0.0, 0.0 ); // returns [ 1.0, 0.0 ] v = cexp( 0.0, 1.0 ); // returns [ ~0.540, ~0.841 ] ``` By default, the function returns real and imaginary components as a two-element `array`. To avoid unnecessary memory allocation, the function supports providing an output (destination) object. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var out = new Float64Array( 2 ); var v = cexp( out, 0.0, 1.0 ); // returns [ ~0.540, ~0.841 ] var bool = ( v === out ); // returns true ```
## Examples ```javascript var Complex128 = require( '@stdlib/complex/float64' ); var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var real = require( '@stdlib/complex/real' ); var imag = require( '@stdlib/complex/imag' ); var cexp = require( '@stdlib/math/base/special/cexp' ); var re; var im; var z1; var z2; var o; var i; for ( i = 0; i < 100; i++ ) { re = round( randu()*100.0 ) - 50.0; im = round( randu()*100.0 ) - 50.0; z1 = new Complex128( re, im ); o = cexp( real(z1), imag(z1) ); z2 = new Complex128( o[ 0 ], o[ 1 ] ); console.log( 'cexp(%s) = %s', z1.toString(), z2.toString() ); } ```