# gdot > Calculate the dot product of two vectors.
The [dot product][dot-product] (or scalar product) is defined as
Dot product definition.
## Usage ```javascript var gdot = require( '@stdlib/blas/gdot' ); ``` #### gdot( x, y ) Calculates the dot product of vectors `x` and `y`. ```javascript var Int32Array = require( '@stdlib/array/int32' ); var array = require( '@stdlib/ndarray/array' ); var x = array( new Int32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] ) ); var y = array( new Int32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] ) ); var z = gdot( x, y ); // returns -5.0 ``` The function has the following parameters: - **x**: a 1-dimensional [`ndarray`][@stdlib/ndarray/array] or an array-like object. - **y**: a 1-dimensional [`ndarray`][@stdlib/ndarray/array] or an array-like object. If provided empty vectors, the function returns `0.0`. ```javascript var z = gdot( [], [] ); // returns 0.0 ```
## Notes - `gdot()` corresponds to the [BLAS][blas] level 1 function [`ddot`][ddot] with the exception that this implementation works with any array type, not just Float64Arrays. - In general, for best performance, especially for large vectors, provide 1-dimensional [`ndarrays`][@stdlib/ndarray/array] whose underlying data type is either `float64` or `float32`.
## Examples ```javascript var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ); var gdot = require( '@stdlib/blas/gdot' ); var rand1 = discreteUniform.factory( 0, 100 ); var rand2 = discreteUniform.factory( 0, 10 ); var x = []; var y = []; var i; for ( i = 0; i < 10; i++ ) { x.push( rand1() ); y.push( rand2() ); } console.log( x ); console.log( y ); var z = gdot( x, y ); console.log( z ); ```