# sapxsumkbn2 > Add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.
## Usage ```javascript var sapxsumkbn2 = require( '@stdlib/blas/ext/base/sapxsumkbn2' ); ``` #### sapxsumkbn2( N, alpha, x, stride ) Adds a constant to each single-precision floating-point strided array element and computes the sum using a second-order iterative Kahan–Babuška algorithm. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); var N = x.length; var v = sapxsumkbn2( N, 5.0, x, 1 ); // returns 16.0 ``` The function has the following parameters: - **N**: number of indexed elements. - **x**: input [`Float32Array`][@stdlib/array/float32]. - **stride**: index increment for `x`. The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to access every other element in `x`, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); var N = floor( x.length / 2 ); var v = sapxsumkbn2( N, 5.0, x, 2 ); // returns 25.0 ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var N = floor( x0.length / 2 ); var v = sapxsumkbn2( N, 5.0, x1, 2 ); // returns 25.0 ``` #### sapxsumkbn2.ndarray( N, alpha, x, stride, offset ) Adds a constant to each single-precision floating-point strided array element and computes the sum using a second-order iterative Kahan–Babuška algorithm and alternative indexing semantics. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); var N = x.length; var v = sapxsumkbn2.ndarray( N, 5.0, x, 1, 0 ); // returns 16.0 ``` The function has the following additional parameters: - **offset**: starting index for `x`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to access every other value in `x` starting from the second value ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var N = floor( x.length / 2 ); var v = sapxsumkbn2.ndarray( N, 5.0, x, 2, 1 ); // returns 25.0 ```
## Notes - If `N <= 0`, both functions return `0.0`.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var Float32Array = require( '@stdlib/array/float32' ); var sapxsumkbn2 = require( '@stdlib/blas/ext/base/sapxsumkbn2' ); var x; var i; x = new Float32Array( 10 ); for ( i = 0; i < x.length; i++ ) { x[ i ] = round( randu()*100.0 ); } console.log( x ); var v = sapxsumkbn2( x.length, 5.0, x, 1 ); console.log( v ); ```
* * *
## References - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x][@klein:2005a].