# smap > Apply a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assign each result to an element in a single-precision floating-point strided output array.
## Usage ```javascript var smap = require( '@stdlib/strided/base/smap' ); ``` #### smap( N, x, strideX, y, strideY, fcn ) Applies a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assigns each result to an element in a single-precision floating-point strided output array. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var absf = require( '@stdlib/math/base/special/absf' ); var x = new Float32Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] ); // Compute the absolute values in-place: smap( x.length, x, 1, x, 1, absf ); // x => [ 2.0, 1.0, 3.0, 5.0, 4.0, 0.0, 1.0, 3.0 ] ``` The function accepts the following arguments: - **N**: number of indexed elements. - **x**: input [`Float32Array`][@stdlib/array/float32]. - **strideX**: index increment for `x`. - **y**: output [`Float32Array`][@stdlib/array/float32]. - **strideY**: index increment for `y`. - **fcn**: function to apply. The `N` and `stride` parameters determine which elements in `x` and `y` are accessed at runtime. For example, to index every other value in `x` and to index the first `N` elements of `y` in reverse order, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var absf = require( '@stdlib/math/base/special/absf' ); var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] ); var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); var N = floor( x.length / 2 ); smap( N, x, 2, y, -1, absf ); // y => [ 5.0, 3.0, 1.0, 0.0, 0.0, 0.0 ] ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][@stdlib/array/float32] views. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var absf = require( '@stdlib/math/base/special/absf' ); // Initial arrays... var x0 = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] ); var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); // Create offset views... var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element var N = floor( x0.length / 2 ); smap( N, x1, -2, y1, 1, absf ); // y0 => [ 0.0, 0.0, 0.0, 6.0, 4.0, 2.0 ] ``` #### smap.ndarray( N, x, strideX, offsetX, y, strideY, offsetY, fcn ) Applies a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assigns each result to an element in a single-precision floating-point strided output array using alternative indexing semantics. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var absf = require( '@stdlib/math/base/special/absf' ); var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0 ] ); var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] ); smap.ndarray( x.length, x, 1, 0, y, 1, 0, absf ); // y => [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ``` The function accepts the following additional arguments: - **offsetX**: starting index for `x`. - **offsetY**: starting index for `y`. While [`typed array`][@stdlib/array/float32] views mandate a view offset based on the underlying `buffer`, the `offsetX` and `offsetY` parameters support indexing semantics based on starting indices. For example, to index every other value in `x` starting from the second value and to index the last `N` elements in `y`, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var absf = require( '@stdlib/math/base/special/absf' ); var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] ); var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); var N = floor( x.length / 2 ); smap.ndarray( N, x, 2, 1, y, -1, y.length-1, absf ); // y => [ 0.0, 0.0, 0.0, 6.0, 4.0, 2.0 ] ```
## Examples ```javascript var round = require( '@stdlib/math/base/special/round' ); var randu = require( '@stdlib/random/base/randu' ); var Float32Array = require( '@stdlib/array/float32' ); var smap = require( '@stdlib/strided/base/smap' ); function scale( x ) { return x * 10.0; } var x = new Float32Array( 10 ); var y = new Float32Array( 10 ); var i; for ( i = 0; i < x.length; i++ ) { x[ i ] = round( (randu()*200.0) - 100.0 ); } console.log( x ); console.log( y ); smap.ndarray( x.length, x, 1, 0, y, -1, y.length-1, scale ); console.log( y ); ```
* * *
## C APIs
### Usage ```c #include "stdlib/strided/base/smap.h" ``` #### stdlib_strided_smap( N, \*X, strideX, \*Y, strideY, fcn ) Applies a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assigns each result to an element in a single-precision floating-point strided output array. ```c #include static float scale( const float x ) { return x * 10.0f; } float X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; int64_t N = 6; stdlib_strided_smap( N, X, 1, Y, 1, scale ); ``` The function accepts the following arguments: - **N**: `[in] int64_t` number of indexed elements. - **X**: `[in] float*` input array. - **strideX** `[in] int64_t` index increment for `X`. - **Y**: `[out] float*` output array. - **strideY**: `[in] int64_t` index increment for `Y`. - **fcn**: `[in] float (*fcn)( float )` unary function to apply. ```c void stdlib_strided_smap( const int64_t N, const float *X, const int64_t strideX, float *Y, const int64_t strideY, float (*fcn)( float ) ); ```
### Examples ```c #include "stdlib/strided/base/smap.h" #include #include #include // Define a callback: static float scale( const float x ) { return x * 10.0; } int main() { // Create an input strided array: float X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }; // Create an output strided array: float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; // Specify the number of elements: int64_t N = 6; // Define the strides: int64_t strideX = 1; int64_t strideY = -1; // Apply the callback: stdlib_strided_smap( N, X, strideX, Y, strideY, scale ); // Print the results: for ( int64_t i = 0; i < N; i++ ) { printf( "Y[ %"PRId64" ] = %f\n", i, Y[ i ] ); } } ```