{{alias}}( x[, options] ) Performs a chi-square independence test. For a two-way contingency table `x` (represented as a two-dimensional `ndarray` or `array` of `arrays`), the null hypothesis that the joint distribution of the cell counts is the product of the row and column marginals is tested, i.e. whether the row and column variables are independent. The function returns an object containing the test statistic, p-value, and decision. Parameters ---------- x: (MatrixLike|Array) Two-way table of cell counts. options: Object (optional) Options. options.alpha: number (optional) Significance level of the hypothesis test. Must be on the interval [0,1]. Default: 0.05. options.correct: boolean (optional) Boolean indicating whether to use Yates' continuity correction when provided a 2x2 contingency table. Default: true. Returns ------- out: Object Test result object. out.alpha: number Significance level. out.rejected: boolean Test decision. out.pValue: number Test p-value. out.statistic: number Test statistic. out.df: number Degrees of freedom. out.expected: ndarray Expected cell counts. out.method: string Test name. out.print: Function Function to print formatted output. Examples -------- // Provide expected probabilities... > var x = [ [ 20, 30 ], [ 30, 20 ] ]; > var out = {{alias}}( x ) { 'rejected': false, 'pValue': ~0.072, 'statistic': 3.24, ... } > out.print() // Set significance level... > var opts = { 'alpha': 0.1 }; > out = {{alias}}( x, opts ) { 'rejected': true, 'pValue': ~0.072, 'statistic': 3.24, ... } > out.print() // Disable Yates' continuity correction (primarily used with small counts): > opts = { 'correct': false }; > out = {{alias}}( x, opts ) {...} See Also --------