/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives; var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' ); var isArray = require( '@stdlib/assert/is-array' ); var setReadOnly = require( '@stdlib/utils/define-read-only-property' ); var hasOwnProp = require( '@stdlib/assert/has-own-property' ); var cdf = require( './../../base/dists/f/cdf' ); var copy = require( '@stdlib/utils/copy' ); var defaults = require( './defaults.json' ); var validate = require( './validate.js' ); var unique = require( './unique.js' ); var meanTable = require( './mean_table.js' ); var mean = require( './mean.js' ); var prettyPrint = require( './print.js' ); // MAIN // /** * Perform a one-way analysis of variance (ANOVA). * * @param {NumericArray} x - measured values * @param {Array} factor - array of treatments * @param {Options} [options] - function options * @param {number} [options.alpha=0.05] - significance level * @throws {TypeError} options argument must be an object * @throws {TypeError} must provide valid options * @throws {TypeError} `x` must be a numeric array * @throws {TypeError} `factor` must be an array * @throws {RangeError} `factor` must have at least two unique elements * @throws {RangeError} length of `x` must be greater than or equal to two * @throws {RangeError} `x` and `factor` must have the same length * @returns {Object} test results */ function anova1( x, factor, options ) { var meanSumSqTreat; // Mean sum of squares var meanSumSqError; var ssTreatment; var sumSqTotal; var sumSqError; var treatment; // Index variable var grandMean; var nGroups; var fScore; var treats; var means; var numDf; var denDf; var nobs; var pVal; var opts; var err; var out; var sq; var i; if ( !isTypedArrayLike( x ) && !isNumberArray( x ) ) { throw new TypeError( 'invalid argument. First argument must be a numeric array. Value: `' + x + '`.' ); } opts = copy( defaults ); if ( arguments.length > 2 ) { err = validate( opts, options ); if ( err ) { throw err; } } nobs = x.length; if ( nobs <= 1 ) { throw new RangeError( 'invalid argument. First argument must have at least two elements. Value: `' + x + '`.' ); } if ( !isArray( factor ) ) { throw new TypeError( 'invalid argument. Second argument must be an array. Value: `' + treats + '`.' ); } treats = unique( factor ); nGroups = treats.length; if ( nGroups <= 1 ) { throw new RangeError( 'invalid argument. Second argument must contain at least two unique elements. Value: `' + treats + '`.' ); } if ( nobs !== factor.length ) { throw new RangeError( 'invalid arguments. Arguments `x` and `factor` must be arrays of the same length.' ); } sumSqTotal = 0.0; ssTreatment = 0.0; means = meanTable( x, factor, treats ); grandMean = mean( x ); // Now get total ss: for ( i = 0; i < nobs; i++ ) { sq = ( x[i] - grandMean ) * ( x[i] - grandMean ); sumSqTotal += sq; } sq = 0.0; for ( treatment in means ) { if ( hasOwnProp( means, treatment ) ) { // Already have sq defined sq = ( means[treatment].mean - grandMean ) * ( means[treatment].mean - grandMean ); ssTreatment += means[treatment].sampleSize * sq; } } numDf = nGroups - 1; denDf = nobs - nGroups; sumSqError = sumSqTotal - ssTreatment; meanSumSqTreat = ssTreatment / numDf; meanSumSqError = sumSqError / denDf; fScore = meanSumSqTreat / meanSumSqError; pVal = 1.0 - cdf( fScore, numDf, denDf ); out = {}; treatment = {}; setReadOnly( treatment, 'df', numDf ); setReadOnly( treatment, 'ss', ssTreatment ); setReadOnly( treatment, 'ms', meanSumSqTreat ); setReadOnly( out, 'treatment', treatment ); err = {}; setReadOnly( err, 'df', denDf ); setReadOnly( err, 'ss', sumSqError ); setReadOnly( err, 'ms', meanSumSqError ); setReadOnly( out, 'error', err ); setReadOnly( out, 'statistic', fScore ); setReadOnly( out, 'pValue', pVal ); setReadOnly( out, 'means', means ); setReadOnly( out, 'method', 'One-Way ANOVA' ); setReadOnly( out, 'alpha', opts.alpha ); setReadOnly( out, 'rejected', pVal <= opts.alpha ); setReadOnly( out, 'print', prettyPrint( out ) ); return out; } // EXPORTS // module.exports = anova1;