#include #include #include #include #include const float PI = 3.14159265358979323846; #define N 1000000 //Array helpers void array_print(float* array, int length) { for (int i = 0; i < length; i++) { printf("item[%d] = %f\n", i, array[i]); } printf("\n"); } float array_sum(float* array, int length) { float output = 0.0; for (int i = 0; i < length; i++) { output += array[i]; } return output; } void array_cumsum(float* array_to_sum, float* array_cumsummed, int length) { array_cumsummed[0] = array_to_sum[0]; for (int i = 1; i < length; i++) { array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i]; } } // Split array helpers int split_array_get_length(int index, int total_length, int n_threads) { return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads); } void split_array_allocate(float** meta_array, int length, int divide_into) { int split_array_length; for (int i = 0; i < divide_into; i++) { split_array_length = split_array_get_length(i, length, divide_into); meta_array[i] = malloc(split_array_length * sizeof(float)); } } void split_array_free(float** meta_array, int divided_into) { for (int i = 0; i < divided_into; i++) { free(meta_array[i]); } free(meta_array); } float split_array_sum(float** meta_array, int length, int divided_into) { int i; float output = 0; #pragma omp parallel for reduction(+ \ : output) for (int i = 0; i < divided_into; i++) { float own_partial_sum = 0; int split_array_length = split_array_get_length(i, length, divided_into); for (int j = 0; j < split_array_length; j++) { own_partial_sum += meta_array[i][j]; } output += own_partial_sum; } return output; } // Pseudo Random number generator uint32_t xorshift32(uint32_t* seed) { // Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" // See // https://en.wikipedia.org/wiki/Xorshift // Also some drama: , uint32_t x = *seed; x ^= x << 13; x ^= x >> 17; x ^= x << 5; return *seed = x; } // Distribution & sampling functions float rand_0_to_1(uint32_t* seed) { return ((float)xorshift32(seed)) / ((float)UINT32_MAX); /* uint32_t x = *seed; x ^= x << 13; x ^= x >> 17; x ^= x << 5; return ((float)(*seed = x))/((float) UINT32_MAX); */ // previously: // ((float)rand_r(seed) / (float)RAND_MAX) // and before that: rand, but it wasn't thread-safe. // See: for why to use rand_r: // rand() is not thread-safe, as it relies on (shared) hidden seed. } float rand_float(float max, uint32_t* seed) { return rand_0_to_1(seed) * max; } float ur_normal(uint32_t* seed) { float u1 = rand_0_to_1(seed); float u2 = rand_0_to_1(seed); float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2); return z; } float random_uniform(float from, float to, uint32_t* seed) { return rand_0_to_1(seed) * (to - from) + from; } float random_normal(float mean, float sigma, uint32_t* seed) { return (mean + sigma * ur_normal(seed)); } float random_lognormal(float logmean, float logsigma, uint32_t* seed) { return expf(random_normal(logmean, logsigma, seed)); } float random_to(float low, float high, uint32_t* seed) { const float NORMAL95CONFIDENCE = 1.6448536269514722; float loglow = logf(low); float loghigh = logf(high); float logmean = (loglow + loghigh) / 2; float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE); return random_lognormal(logmean, logsigma, seed); } // Mixture function float mixture_one_thread(float (*samplers[])(uint32_t*), float* weights, int n_dists, uint32_t* seed) { // You can see a slightly simpler version of this function in the git history // or in alt/C-02-better-algorithm-one-thread/ float sum_weights = array_sum(weights, n_dists); float* cumsummed_normalized_weights = malloc(n_dists * sizeof(float)); cumsummed_normalized_weights[0] = weights[0] / sum_weights; for (int i = 1; i < n_dists; i++) { cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights; } //create var holders float p1, result; int sample_index, i, own_length; p1 = random_uniform(0, 1); for (int i = 0; i < n_dists; i++) { if (p1 < cummulative_weights[i]) { result = samplers[i](); break; } } free(normalized_weights); free(cummulative_weights); return result; } // mixture paralellized void mixture_paralell(float (*samplers[])(uint32_t*), float* weights, int n_dists, float** results, int n_threads) { // You can see a simpler version of this function in the git history // or in alt/C-02-better-algorithm-one-thread/ float sum_weights = array_sum(weights, n_dists); float* cumsummed_normalized_weights = malloc(n_dists * sizeof(float)); cumsummed_normalized_weights[0] = weights[0] / sum_weights; for (int i = 1; i < n_dists; i++) { cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights; } //create var holders float p1; int sample_index, i, split_array_length; // uint32_t* seeds[n_threads]; uint32_t** seeds = malloc(n_threads * sizeof(uint32_t*)); for (uint32_t i = 0; i < n_threads; i++) { seeds[i] = malloc(sizeof(uint32_t)); *seeds[i] = i + 1; // xorshift can't start with 0 } #pragma omp parallel private(i, p1, sample_index, split_array_length) { #pragma omp for for (i = 0; i < n_threads; i++) { split_array_length = split_array_get_length(i, N, n_threads); for (int j = 0; j < split_array_length; j++) { p1 = random_uniform(0, 1, seeds[i]); for (int k = 0; k < n_dists; k++) { if (p1 < cumsummed_normalized_weights[k]) { results[i][j] = samplers[k](seeds[i]); break; } } } } } // free(normalized_weights); // free(cummulative_weights); free(cumsummed_normalized_weights); for (uint32_t i = 0; i < n_threads; i++) { free(seeds[i]); } free(seeds); } // Parallization function void paralellize(float *sampler(uint32_t* seed), float** results, int n_threads){ int sample_index, i, split_array_length; uint32_t** seeds = malloc(n_threads * sizeof(uint32_t*)); for (uint32_t i = 0; i < n_threads; i++) { seeds[i] = malloc(sizeof(uint32_t)); *seeds[i] = i + 1; // xorshift can't start with 0 } #pragma omp parallel private(i, p1, sample_index, split_array_length) { #pragma omp for for (i = 0; i < n_threads; i++) { split_array_length = split_array_get_length(i, N, n_threads); for (int j = 0; j < split_array_length; j++) { results[i][j] = sampler(seeds[i]); break; } } } free(cumsummed_normalized_weights); for (uint32_t i = 0; i < n_threads; i++) { free(seeds[i]); } free(seeds); } // Functions used for the BOTEC. // Their type has to be the same, as we will be passing them around. float sample_0(uint32_t* seed) { return 0; } float sample_1(uint32_t* seed) { return 1; } float sample_few(uint32_t* seed) { return random_to(1, 3, seed); } float sample_many(uint32_t* seed) { return random_to(2, 10, seed); } int main() { // Toy example // Declare variables in play float p_a, p_b, p_c; int n_threads = omp_get_max_threads(); // printf("Max threads: %d\n", n_threads); // omp_set_num_threads(n_threads); float** dist_mixture = malloc(n_threads * sizeof(float*)); split_array_allocate(dist_mixture, N, n_threads); // Initialize variables p_a = 0.8; p_b = 0.5; p_c = p_a * p_b; // Generate mixture int n_dists = 4; float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 }; float (*samplers[])(uint32_t*) = { sample_0, sample_1, sample_few, sample_many }; mixture(samplers, weights, n_dists, dist_mixture, n_threads); printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N); // array_print(dist_mixture[0], N); split_array_free(dist_mixture, n_threads); return 0; }