# Quinary > Apply a quinary callback to strided input array elements and assign results to elements in a strided output array.
## Usage ```javascript var quinary = require( '@stdlib/strided/base/quinary' ); ``` #### quinary( arrays, shape, strides, fcn ) Applies a quinary callback to strided input array elements and assigns results to elements in a strided output array. ```javascript var Float64Array = require( '@stdlib/array/float64' ); function add( x, y, z, w, u ) { return x + y + z + w + u; } var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var w = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var u = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var v = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] ); quinary( [ x, y, z, w, u, v ], [ x.length ], [ 1, 1, 1, 1, 1, 1 ], add ); // v => [ 5.0, 10.0, 15.0, 20.0, 25.0 ] ``` The function accepts the following arguments: - **arrays**: array-like object containing five strided input arrays and one strided output array. - **shape**: array-like object containing a single element, the number of indexed elements. - **strides**: array-like object containing the stride lengths for the strided input and output arrays. - **fcn**: quinary function to apply. The `shape` and `strides` parameters determine which elements in the strided input and output arrays are accessed at runtime. For example, to index every other value in the strided input arrays and to index the first `N` elements of the strided output array in reverse order, ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); function add( x, y, z, w, u ) { return x + y + z + w + u; } var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var w = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var u = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var v = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] ); var N = floor( x.length / 2 ); quinary( [ x, y, z, w, u, v ], [ N ], [ 2, 2, 2, 2, 2, -1 ], add ); // v => [ 25.0, 15.0, 5.0, 0.0, 0.0, 0.0 ] ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); function add( x, y, z, w, u ) { return x + y + z + w + u; } // Initial arrays... var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var y0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var z0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var w0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var u0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var v0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); // Create offset views... var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var z1 = new Float64Array( z0.buffer, z0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var w1 = new Float64Array( w0.buffer, w0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var u1 = new Float64Array( u0.buffer, u0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var v1 = new Float64Array( v0.buffer, v0.BYTES_PER_ELEMENT*3 ); // start at 4th element var N = floor( x0.length / 2 ); quinary( [ x1, y1, z1, w1, u1, v1 ], [ N ], [ -2, -2, -2, -2, -2, 1 ], add ); // u0 => [ 0.0, 0.0, 0.0, 30.0, 20.0, 10.0 ] ``` #### quinary.ndarray( arrays, shape, strides, offsets, fcn ) Applies a quinary callback to strided input array elements and assigns results to elements in a strided output array using alternative indexing semantics. ```javascript var Float64Array = require( '@stdlib/array/float64' ); function add( x, y, z, w, u ) { return x + y + z + w + u; } var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var w = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var u = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] ); var v = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] ); quinary.ndarray( [ x, y, z, w, u, v ], [ x.length ], [ 1, 1, 1, 1, 1, 1 ], [ 0, 0, 0, 0, 0, 0 ], add ); // v => [ 5.0, 10.0, 15.0, 20.0, 25.0 ] ``` The function accepts the following additional arguments: - **offsets**: array-like object containing the starting indices (i.e., index offsets) for the strided input and output arrays. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offsets` parameter supports indexing semantics based on starting indices. For example, to index every other value in the strided input arrays starting from the second value and to index the last `N` elements in the strided output array, ```javascript var Float64Array = require( '@stdlib/array/float64' ); var floor = require( '@stdlib/math/base/special/floor' ); function add( x, y, z, w, u ) { return x + y + z + w + u; } var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var w = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var u = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var v = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); var N = floor( x.length / 2 ); quinary.ndarray( [ x, y, z, w, u, v ], [ N ], [ 2, 2, 2, 2, 2, -1 ], [ 1, 1, 1, 1, 1, v.length-1 ], add ); // v => [ 0.0, 0.0, 0.0, 30.0, 20.0, 10.0 ] ```
## Examples ```javascript var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory; var filledarray = require( '@stdlib/array/filled' ); var gfillBy = require( '@stdlib/blas/ext/base/gfill-by' ); var quinary = require( '@stdlib/strided/base/quinary' ); function add( x, y, z, w, u ) { return x + y + z + w + u; } var N = 10; var x = filledarray( 0.0, N, 'generic' ); gfillBy( x.length, x, 1, discreteUniform( -100, 100 ) ); console.log( x ); var y = filledarray( 0.0, N, 'generic' ); gfillBy( y.length, y, 1, discreteUniform( -100, 100 ) ); console.log( y ); var z = filledarray( 0.0, N, 'generic' ); gfillBy( z.length, z, 1, discreteUniform( -100, 100 ) ); console.log( z ); var w = filledarray( 0.0, N, 'generic' ); gfillBy( w.length, w, 1, discreteUniform( -100, 100 ) ); console.log( w ); var u = filledarray( 0.0, N, 'generic' ); gfillBy( u.length, u, 1, discreteUniform( -100, 100 ) ); console.log( u ); var v = filledarray( 0.0, N, 'generic' ); console.log( v ); var shape = [ N ]; var strides = [ 1, 1, 1, 1, 1, -1 ]; var offsets = [ 0, 0, 0, 0, 0, N-1 ]; quinary.ndarray( [ x, y, z, w, u, v ], shape, strides, offsets, add ); console.log( v ); ```