# incrvariance > Compute an [unbiased sample variance][sample-variance] incrementally.
The [unbiased sample variance][sample-variance] is defined as
Equation for the unbiased sample variance.
## Usage ```javascript var incrvariance = require( '@stdlib/stats/incr/variance' ); ``` #### incrvariance( \[mean] ) Returns an accumulator `function` which incrementally computes an [unbiased sample variance][sample-variance]. ```javascript var accumulator = incrvariance(); ``` If the mean is already known, provide a `mean` argument. ```javascript var accumulator = incrvariance( 3.0 ); ``` #### accumulator( \[x] ) If provided an input value `x`, the accumulator function returns an updated [unbiased sample variance][sample-variance]. If not provided an input value `x`, the accumulator function returns the current [unbiased sample variance][sample-variance]. ```javascript var accumulator = incrvariance(); var s2 = accumulator( 2.0 ); // returns 0.0 s2 = accumulator( 1.0 ); // => ((2-1.5)^2+(1-1.5)^2) / (2-1) // returns 0.5 s2 = accumulator( 3.0 ); // => ((2-2)^2+(1-2)^2+(3-2)^2) / (3-1) // returns 1.0 s2 = accumulator(); // returns 1.0 ```
## Notes - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var incrvariance = require( '@stdlib/stats/incr/variance' ); var accumulator; var v; var i; // Initialize an accumulator: accumulator = incrvariance(); // For each simulated datum, update the unbiased sample variance... for ( i = 0; i < 100; i++ ) { v = randu() * 100.0; accumulator( v ); } console.log( accumulator() ); ```