/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var factory = require( './factory.js' ); var randint32 = require( './rand_int32.js' ); // MAIN // /** * Generates a pseudorandom integer on the interval \\( [1,2^{31}-1) \\). * * ## Method * * Linear congruential generators (LCGs) use the recurrence relation * * ```tex * X_{n+1} = ( a \cdot X_n + c ) \operatorname{mod}(m) * ``` * * where the modulus \\( m \\) is a prime number or power of a prime number and \\( a \\) is a primitive root modulo \\( m \\). * * * * For an LCG to be a Lehmer RNG, the seed \\( X_0 \\) must be coprime to \\( m \\). * * * * In this implementation, the constants \\( a \\), \\( c \\), and \\( m \\) have the values * * ```tex * \begin{align*} * a &= 7^5 = 16807 \\ * c &= 0 \\ * m &= 2^{31} - 1 = 2147483647 * \end{align*} * ``` * * * * The constant \\( m \\) is a Mersenne prime (modulo \\(31\\)). * * * * * * The constant \\( a \\) is a primitive root (modulo \\(31\\)). * * * * Accordingly, the maximum possible product is * * ```tex * 16807 \cdot (m - 1) \approx 2^{46} * ``` * * The values for \\( a \\), \\( c \\), and \\( m \\) are taken from Park and Miller, "Random Number Generators: Good Ones Are Hard To Find". Park's and Miller's article is also the basis for a recipe in the second edition of _Numerical Recipes in C_. * * * ## Notes * * - The generator has a period of approximately \\(2.1\mbox{e}9\\) (see [Numerical Recipes in C, 2nd Edition](#references), p. 279). * * * ## References * * - Park, S. K., and K. W. Miller. 1988. "Random Number Generators: Good Ones Are Hard to Find." _Communications of the ACM_ 31 (10). New York, NY, USA: ACM: 1192–1201. doi:[10.1145/63039.63042](http://dx.doi.org/10.1145/63039.63042). * - Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. 1992. _Numerical Recipes in C: The Art of Scientific Computing, Second Edition_. Cambridge University Press. * * * @function minstd * @type {PRNG} * @returns {PositiveInteger} pseudorandom integer * * @example * var v = minstd(); * // returns */ var minstd = factory({ 'seed': randint32() }); // EXPORTS // module.exports = minstd;