# lcm
> Compute the [least common multiple][lcm] (lcm).
The [least common multiple][lcm] (lcm) of two non-zero integers `a` and `b` is the smallest positive integer that is divisible by both `a` and `b`. The lcm is also known as the **lowest common multiple** or **smallest common multiple** and finds common use in calculating the **lowest common denominator** (lcd).
## Usage
```javascript
var lcm = require( '@stdlib/math/base/special/lcm' );
```
#### lcm( a, b )
Computes the [least common multiple][lcm] (lcm).
```javascript
var v = lcm( 48, 18 );
// returns 144
```
If either `a` or `b` is `0`, the function returns `0`.
```javascript
var v = lcm( 0, 0 );
// returns 0
v = lcm( 2, 0 );
// returns 0
v = lcm( 0, 3 );
// returns 0
```
Both `a` and `b` must have integer values; otherwise, the function returns `NaN`.
```javascript
var v = lcm( 3.14, 18 );
// returns NaN
v = lcm( 48, 3.14 );
// returns NaN
v = lcm( NaN, 18 );
// returns NaN
v = lcm( 48, NaN );
// returns NaN
```
## Examples
```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var lcm = require( '@stdlib/math/base/special/lcm' );
var a;
var b;
var v;
var i;
for ( i = 0; i < 100; i++ ) {
a = round( randu()*50 );
b = round( randu()*50 );
v = lcm( a, b );
console.log( 'lcm(%d,%d) = %d', a, b, v );
}
```
[lcm]: https://en.wikipedia.org/wiki/Least_common_multiple