# imports import numpy as np rng = np.random.default_rng(123) DEFAULT_N = 1000000 # three simple functions def normal(mean, std, n=DEFAULT_N): return np.array(rng.normal(mean, std, n)) def lognormal(mean, std, n=DEFAULT_N): return np.array(rng.lognormal(mean, std, n)) def to(low, high, n=DEFAULT_N): normal95confidencePoint = 1.6448536269514722 logLow = np.log(low) logHigh = np.log(high) meanlog = (logLow + logHigh)/2 sdlog = (logHigh - logLow) / (2.0 * normal95confidencePoint) return lognormal(meanlog, sdlog, n) def mixture(samples_list, weights_array, n=DEFAULT_N): normalized_weights = weights_array/sum(weights_array) cummulative_sums = np.cumsum(normalized_weights) helper_probs = rng.random(n) results = np.empty(n) for i in range(n): helper_list = [j for j in range( len(cummulative_sums)) if cummulative_sums[j] > helper_probs[i]] if len(helper_list) == 0: helper_loc = 0 else: helper_loc = helper_list[0] target_samples = samples_list[helper_loc] result = rng.choice(target_samples, 1)[0] results[i] = result return (results) # Example p_a = 0.8 p_b = 0.5 p_c = p_a * p_b dists = [[0], [1], to(1, 3), to(2, 10)] # print(dists) weights = np.array([1 - p_c, p_c/2, p_c/4, p_c/4]) # print(weights) result = mixture(dists, weights) mean_result = np.mean(result) print(mean_result)