/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stdlib/stats/base/dmeanvarpn.h" #include "stdlib/blas/ext/base/dsumpw.h" #include /** * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param N number of indexed elements * @param correction degrees of freedom adjustment * @param X input array * @param strideX X stride length * @param Out output array * @param strideOut Out stride length */ void stdlib_strided_dmeanvarpn( const int64_t N, const double correction, const double *X, const int64_t strideX, double *Out, const int64_t strideOut ) { int64_t ix; int64_t io; int64_t i; double M2; double mu; double dN; double M; double d; double c; double n; if ( strideX < 0 ) { ix = (1-N) * strideX; } else { ix = 0; } if ( strideOut < 0 ) { io = -strideOut; } else { io = 0; } if ( N <= 0 ) { Out[ io ] = 0.0 / 0.0; // NaN Out[ io+strideOut ] = 0.0 / 0.0; // NaN return; } dN = (double)N; n = dN - correction; if ( N == 1 || strideX == 0 ) { Out[ io ] = X[ ix ]; if ( n <= 0.0 ) { Out[ io+strideOut ] = 0.0 / 0.0; // NaN } else { Out[ io+strideOut ] = 0.0; } return; } // Compute an estimate for the mean: mu = stdlib_strided_dsumpw( N, X, strideX ) / dN; if ( mu != mu ) { Out[ io ] = 0.0 / 0.0; // NaN Out[ io+strideOut ] = 0.0 / 0.0; // NaN return; } // Compute the sum of squared differences from the mean... M2 = 0.0; M = 0.0; for ( i = 0; i < N; i++ ) { d = X[ ix ] - mu; M2 += d * d; M += d; ix += strideX; } // Compute an error term for the mean: c = M / dN; Out[ io ] = mu + c; if ( n <= 0.0 ) { Out[ io+strideOut ] = 0.0 / 0.0; // NaN } else { Out[ io+strideOut ] = (M2/n) - (c*(M/n)); } return; }