/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stdlib/stats/base/dvariancech.h" #include /** * Computes the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm. * * ## Method * * - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154). * - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param N number of indexed elements * @param correction degrees of freedom adjustment * @param X input array * @param stride stride length * @return output value */ double stdlib_strided_dvariancech( const int64_t N, const double correction, const double *X, const int64_t stride ) { int64_t ix; int64_t i; double dN; double mu; double M2; double M; double n; double d; dN = (double)N; n = dN - correction; if ( N <= 0 || n <= 0.0 ) { return 0.0 / 0.0; // NaN } if ( N == 1 || stride == 0 ) { return 0.0; } if ( stride < 0 ) { ix = (1-N) * stride; } else { ix = 0; } // Use an estimate for the mean: mu = X[ ix ]; ix += stride; // Compute the variance... M2 = 0.0; M = 0.0; for ( i = 1; i < N; i++ ) { d = X[ ix ] - mu; M2 += d * d; M += d; ix += stride; } return (M2/n) - ((M/dN)*(M/n)); }