/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); var ssumpw = require( '@stdlib/blas/ext/base/ssumpw' ); var sapxsumpw = require( '@stdlib/blas/ext/base/sapxsumpw' ); // MAIN // /** * Computes the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param {PositiveInteger} N - number of indexed elements * @param {Float32Array} x - input array * @param {integer} stride - stride length * @returns {number} arithmetic mean * * @example * var Float32Array = require( '@stdlib/array/float32' ); * * var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); * var N = x.length; * * var v = smeanpn( N, x, 1 ); * // returns ~0.3333 */ function smeanpn( N, x, stride ) { var mu; var c; if ( N <= 0 ) { return NaN; } if ( N === 1 || stride === 0 ) { return x[ 0 ]; } // Compute an estimate for the mean: mu = float64ToFloat32( ssumpw( N, x, stride ) / N ); // Compute an error term: c = float64ToFloat32( sapxsumpw( N, -mu, x, stride ) / N ); return float64ToFloat32( mu + c ); } // EXPORTS // module.exports = smeanpn;