{{alias}}( N, correction, x, stride ) Computes the standard error of the mean for a double-precision floating- point strided array using a one-pass trial mean algorithm. The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. Indexing is relative to the first index. To introduce an offset, use a typed array view. If `N <= 0`, the function returns `NaN`. Parameters ---------- N: integer Number of indexed elements. correction: number Degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the standard deviation according to `N - c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the standard deviation of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample standard deviation, setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). x: Float64Array Input array. stride: integer Index increment. Returns ------- out: number Standard error of the mean. Examples -------- // Standard Usage: > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] ); > {{alias}}( x.length, 1, x, 1 ) ~1.20185 // Using `N` and `stride` parameters: > x = new {{alias:@stdlib/array/float64}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] ); > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > var stride = 2; > {{alias}}( N, 1, x, stride ) ~1.20185 // Using view offsets: > var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] ); > var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 ); > stride = 2; > {{alias}}( N, 1, x1, stride ) ~1.20185 {{alias}}.ndarray( N, correction, x, stride, offset ) Computes the standard error of the mean for a double-precision floating- point strided array using a one-pass trial mean algorithm and alternative indexing semantics. While typed array views mandate a view offset based on the underlying buffer, the `offset` parameter supports indexing semantics based on a starting index. Parameters ---------- N: integer Number of indexed elements. correction: number Degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the standard deviation according to `N - c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the standard deviation of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample standard deviation, setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). x: Float64Array Input array. stride: integer Index increment. offset: integer Starting index. Returns ------- out: number Standard error of the mean. Examples -------- // Standard Usage: > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] ); > {{alias}}.ndarray( x.length, 1, x, 1, 0 ) ~1.20185 // Using offset parameter: > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] ); > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > {{alias}}.ndarray( N, 1, x, 2, 1 ) ~1.20185 See Also --------