# Lucas Polynomial > Evaluate a [Lucas polynomial][fibonacci-polynomials].
A [Lucas polynomial][fibonacci-polynomials] is expressed according to the following recurrence relation
Lucas polynomial.
Alternatively, if `L(n,k)` is the coefficient of `x^k` in `L_n(x)`, then
Lucas polynomial expressed as a sum.
We can extend [Lucas polynomials][fibonacci-polynomials] to negative `n` using the identity
NegaLucas polynomial.
## Usage ```javascript var lucaspoly = require( '@stdlib/math/base/tools/lucaspoly' ); ``` #### lucaspoly( n, x ) Evaluates a [Lucas polynomial][fibonacci-polynomials] at a value `x`. ```javascript var v = lucaspoly( 5, 2.0 ); // => 2^5 + 5*2^3 + 5*2 // returns 82.0 ``` #### lucaspoly.factory( n ) Uses code generation to generate a `function` for evaluating a [Lucas polynomial][fibonacci-polynomials]. ```javascript var polyval = lucaspoly.factory( 5 ); var v = polyval( 1.0 ); // => 1^5 + 5*1^3 + 5 // returns 11.0 v = polyval( 2.0 ); // => 2^5 + 5*2^3 + 5*2 // returns 82.0 ```
## Notes - For hot code paths, a compiled function will be more performant than `lucaspoly()`. - While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict [content security policy][mdn-csp] (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
## Examples ```javascript var lucaspoly = require( '@stdlib/math/base/tools/lucaspoly' ); var i; // Compute the negaLucas and Lucas numbers... for ( i = -76; i < 77; i++ ) { console.log( 'L_%d = %d', i, lucaspoly( i, 1.0 ) ); } ```