# dsvariance > Calculate the [variance][variance] of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
The population [variance][variance] of a finite size population of size `N` is given by
Equation for the population variance.
where the population mean is given by
Equation for the population mean.
Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
Equation for computing an unbiased sample variance.
where the sample mean is given by
Equation for the sample mean.
The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
## Usage ```javascript var dsvariance = require( '@stdlib/stats/base/dsvariance' ); ``` #### dsvariance( N, correction, x, stride ) Computes the [variance][variance] of a single-precision floating-point strided array `x` using extended accumulation and returning an extended precision result. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); var N = x.length; var v = dsvariance( N, 1, x, 1 ); // returns ~4.3333 ``` The function has the following parameters: - **N**: number of indexed elements. - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). - **x**: input [`Float32Array`][@stdlib/array/float32]. - **stride**: index increment for `x`. The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); var N = floor( x.length / 2 ); var v = dsvariance( N, 1, x, 2 ); // returns 6.25 ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var N = floor( x0.length / 2 ); var v = dsvariance( N, 1, x1, 2 ); // returns 6.25 ``` #### dsvariance.ndarray( N, correction, x, stride, offset ) Computes the [variance][variance] of a single-precision floating-point strided array using extended accumulation and alternative indexing semantics and returning an extended precision result. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); var N = x.length; var v = dsvariance.ndarray( N, 1, x, 1, 0 ); // returns ~4.33333 ``` The function has the following additional parameters: - **offset**: starting index for `x`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var N = floor( x.length / 2 ); var v = dsvariance.ndarray( N, 1, x, 2, 1 ); // returns 6.25 ```
## Notes - If `N <= 0`, both functions return `NaN`. - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. - Accumulated intermediate values are stored as double-precision floating-point numbers.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var Float32Array = require( '@stdlib/array/float32' ); var dsvariance = require( '@stdlib/stats/base/dsvariance' ); var x; var i; x = new Float32Array( 10 ); for ( i = 0; i < x.length; i++ ) { x[ i ] = round( (randu()*100.0) - 50.0 ); } console.log( x ); var v = dsvariance( x.length, 1, x, 1 ); console.log( v ); ```