# Fibonacci Polynomial > Evaluate a [Fibonacci polynomial][fibonacci-polynomials].
A [Fibonacci polynomial][fibonacci-polynomials] is expressed according to the following recurrence relation
Fibonacci polynomial.
Alternatively, if `F(n,k)` is the coefficient of `x^k` in `F_n(x)`, then
Combinatoric interpretation of a Fibonacci polynomial.
where
Fibonacci polynomial coefficients.
We can extend [Fibonacci polynomials][fibonacci-polynomials] to negative `n` using the identity
NegaFibonacci polynomial.
## Usage ```javascript var fibpoly = require( '@stdlib/math/base/tools/fibpoly' ); ``` #### fibpoly( n, x ) Evaluates a [Fibonacci polynomial][fibonacci-polynomials] at a value `x`. ```javascript var v = fibpoly( 5, 2.0 ); // => 2^4 + 3*2^2 + 1 // returns 29.0 ``` #### fibpoly.factory( n ) Uses code generation to generate a `function` for evaluating a [Fibonacci polynomial][fibonacci-polynomials]. ```javascript var polyval = fibpoly.factory( 5 ); var v = polyval( 1.0 ); // => 1^4 + 3*1^2 + 1 // returns 5.0 v = polyval( 2.0 ); // => 2^4 + 3*2^2 + 1 // returns 29.0 ```
## Notes - For hot code paths, a compiled function will be more performant than `fibpoly()`. - While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict [content security policy][mdn-csp] (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
## Examples ```javascript var fibpoly = require( '@stdlib/math/base/tools/fibpoly' ); var i; // Compute the negaFibonacci and Fibonacci numbers... for ( i = -77; i < 78; i++ ) { console.log( 'F_%d = %d', i, fibpoly( i, 1.0 ) ); } ```