# kruskalTest
> Compute the Kruskal-Wallis test for equal medians.
The Kruskal-Wallis rank sum test evaluates for multiple samples the null hypothesis that their medians are identical. The Kruskal-Wallis test is a nonparametric test which does not require the data to be normally distributed.
To carry out the test, the rank sums `S_h` of the individual groups are calculated. The test statistic is then calculated as
where `N` denotes the total number of observations and `t_{r(i)}` are the number of tied observations with rank _i_.
## Usage
```javascript
var kruskalTest = require( '@stdlib/stats/kruskal-test' );
```
#### kruskalTest( a\[,b,...,k]\[, opts] )
For input arrays `a`, `b`, ... holding numeric observations, this function calculates the Kruskal-Wallis rank sums test, which tests the null hypothesis that the medians in all `k` groups are the same.
```javascript
// Data from Hollander & Wolfe (1973), p. 116:
var x = [ 2.9, 3.0, 2.5, 2.6, 3.2 ];
var y = [ 3.8, 2.7, 4.0, 2.4 ];
var z = [ 2.8, 3.4, 3.7, 2.2, 2.0 ];
var out = kruskalTest( x, y, z );
/* returns
{
'rejected': false,
'alpha': 0.05,
'df': 2,
'pValue': ~0.68,
'statistic': ~0.771,
...
}
*/
```
The function accepts the following `options`:
- **alpha**: `number` in the interval `[0,1]` giving the significance level of the hypothesis test. Default: `0.05`.
- **groups**: an `array` of group indicators. If set, the function assumes that only a single numeric array is provided holding all observations.
By default, the test is carried out at a significance level of `0.05`. To choose a custom significance level, set the `alpha` option.
```javascript
var x = [ 2.9, 3.0, 2.5, 2.6, 3.2 ];
var y = [ 3.8, 2.7, 4.0, 2.4 ];
var z = [ 2.8, 3.4, 3.7, 2.2, 2.0 ];
var out = kruskalTest( x, y, z, {
'alpha': 0.01
});
/* returns
{
'rejected': false,
'alpha': 0.01,
'df': 2,
'pValue': ~0.68,
'statistic': ~0.771,
...
}
*/
```
The function provides an alternate interface by supplying an array of group indicators to the `groups` option. In this case, it is assumed that only a single numeric array holding all observations is provided to the function.
```javascript
var arr = [
2.9, 3.0, 2.5, 2.6, 3.2,
3.8, 2.7, 4.0, 2.4,
2.8, 3.4, 3.7, 2.2, 2.0
];
var groups = [
'a', 'a', 'a', 'a', 'a',
'b', 'b', 'b', 'b',
'c', 'c', 'c', 'c', 'c'
];
var out = kruskalTest( arr, {
'groups': groups
});
```
The returned object comes with a `.print()` method which when invoked will print a formatted output of the results of the hypothesis test. `print` accepts a `digits` option that controls the number of decimal digits displayed for the outputs and a `decision` option, which when set to `false` will hide the test decision.
```javascript
var x = [ 2.9, 3.0, 2.5, 2.6, 3.2 ];
var y = [ 3.8, 2.7, 4.0, 2.4 ];
var z = [ 2.8, 3.4, 3.7, 2.2, 2.0 ];
var out = kruskalTest( x, y, z );
console.log( out.print() );
/* =>
Kruskal-Wallis Test
Null hypothesis: the medians of all groups are the same
pValue: 0.68
statistic: 0.7714 df: 2
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
```
## Examples
```javascript
var kruskalTest = require( '@stdlib/stats/kruskal-test' );
// Data from Hollander & Wolfe (1973), p. 116:
var x = [ 2.9, 3.0, 2.5, 2.6, 3.2 ];
var y = [ 3.8, 2.7, 4.0, 2.4 ];
var z = [ 2.8, 3.4, 3.7, 2.2, 2.0 ];
var out = kruskalTest( x, y, z );
/* returns
{
'rejected': false,
'alpha': 0.05,
'df': 2,
'pValue': ~0.68,
'statistic': ~0.771,
...
}
*/
var table = out.print();
/* returns
Kruskal-Wallis Test
Null hypothesis: the medians of all groups are the same
pValue: 0.68
statistic: 0.7714 df: 2
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
```