# daxpy
> Multiply a vector `x` by a constant `alpha` and add the result to `y`.
## Usage
```javascript
var daxpy = require( '@stdlib/blas/base/daxpy' );
```
#### daxpy( N, alpha, x, strideX, y, strideY )
Multiplies a vector `x` by a constant `alpha` and adds the result to `y`.
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;
daxpy( x.length, alpha, x, 1, y, 1 );
// y => [ 6.0, 11.0, 16.0, 21.0, 26.0 ]
```
The function has the following parameters:
- **N**: number of indexed elements.
- **alpha**: `numeric` constant.
- **x**: input [`Float64Array`][mdn-float64array].
- **strideX**: index increment for `x`.
- **y**: input [`Float64Array`][mdn-float64array].
- **strideY**: index increment for `y`.
The `N` and `stride` parameters determine which elements in `x` and `y` are accessed at runtime. For example, to multiply every other value in `x` by `alpha` and add the result to the first `N` elements of `y` in reverse order,
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;
var N = floor( x.length / 2 );
daxpy( N, alpha, x, 2, y, -1 );
// y => [ 26.0, 16.0, 6.0, 1.0, 1.0, 1.0 ]
```
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var N = floor( x0.length / 2 );
daxpy( N, 5.0, x1, -2, y1, 1 );
// y0 => [ 7.0, 8.0, 9.0, 40.0, 31.0, 22.0 ]
```
#### daxpy.ndarray( N, alpha, x, strideX, offsetX, y, strideY, offsetY )
Multiplies a vector `x` by a constant `alpha` and adds the result to `y` using alternative indexing semantics.
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;
daxpy.ndarray( x.length, alpha, x, 1, 0, y, 1, 0 );
// y => [ 6.0, 11.0, 16.0, 21.0, 26.0 ]
```
The function has the following additional parameters:
- **offsetX**: starting index for `x`.
- **offsetY**: starting index for `y`.
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offsetX` and `offsetY` parameters support indexing semantics based on starting indices. For example, to multiply every other value in `x` by a constant `alpha` starting from the second value and add to the last `N` elements in `y` where `x[i] -> y[n]`, `x[i+2] -> y[n-1]`,...,
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var alpha = 5.0;
var N = floor( x.length / 2 );
daxpy.ndarray( N, alpha, x, 2, 1, y, -1, y.length-1 );
// y => [ 7.0, 8.0, 9.0, 40.0, 31.0, 22.0 ]
```
## Notes
- If `N <= 0` or `alpha == 0`, both functions return `y` unchanged.
- `daxpy()` corresponds to the [BLAS][blas] level 1 function [`daxpy`][daxpy].
## Examples
```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var daxpy = require( '@stdlib/blas/base/daxpy' );
var x;
var y;
var i;
x = new Float64Array( 10 );
y = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( randu() * 100.0 );
y[ i ] = round( randu() * 10.0 );
}
console.log( x );
console.log( y );
daxpy.ndarray( x.length, 5.0, x, 1, 0, y, -1, y.length-1 );
console.log( y );
```
[blas]: http://www.netlib.org/blas
[daxpy]: http://www.netlib.org/lapack/explore-html/de/da4/group__double__blas__level1.html
[mdn-float64array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Float64Array
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray