Compare commits
3 Commits
7834c3baae
...
2a9d3bf135
Author | SHA1 | Date | |
---|---|---|---|
2a9d3bf135 | |||
9a60392849 | |||
707f3d744b |
106
C/alt/04-factor-out-paralellization/makefile
Normal file
106
C/alt/04-factor-out-paralellization/makefile
Normal file
|
@ -0,0 +1,106 @@
|
|||
# Interface:
|
||||
# make
|
||||
# make build
|
||||
# make format
|
||||
# make run
|
||||
|
||||
# Compiler
|
||||
CC=gcc
|
||||
# CC=tcc # <= faster compilation
|
||||
|
||||
# Main file
|
||||
SRC=samples.c
|
||||
OUTPUT=out/samples
|
||||
|
||||
SRC_ONE_THREAD=./samples-one-thread.c
|
||||
OUTPUT_ONE_THREAD=out/samples-one-thread
|
||||
|
||||
## Dependencies
|
||||
# Has no dependencies
|
||||
MATH=-lm
|
||||
|
||||
## Flags
|
||||
DEBUG= #'-g'
|
||||
STANDARD=-std=c99
|
||||
WARNINGS=-Wall
|
||||
OPTIMIZED=-O3 #-O3 actually gives better performance than -Ofast, at least for this version
|
||||
OPENMP=-fopenmp
|
||||
|
||||
## Formatter
|
||||
STYLE_BLUEPRINT=webkit
|
||||
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
||||
|
||||
## make build
|
||||
build: $(SRC)
|
||||
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(OPENMP) $(MATH) -o $(OUTPUT)
|
||||
|
||||
static:
|
||||
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(OPENMP) $(MATH) -o $(OUTPUT)
|
||||
|
||||
format: $(SRC)
|
||||
$(FORMATTER) $(SRC)
|
||||
|
||||
run: $(SRC) $(OUTPUT)
|
||||
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
||||
|
||||
multi:
|
||||
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=2 ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=4 ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=8 ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=16 ./$(OUTPUT) && echo
|
||||
|
||||
## Timing
|
||||
|
||||
time-linux:
|
||||
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||
|
||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=1 $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=1 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 1 thread: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=2 $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=2 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 2 threads: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=4 $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=4 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time for 4 threads: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=8 $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=8 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 8 threads: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=16 $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=16 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 16 threads: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
time-linux-fastest:
|
||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=16 $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=16 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 16 threads: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
time-linux-simple:
|
||||
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||
OMP_NUM_THREADS=1 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=2 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=4 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=8 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||
OMP_NUM_THREADS=16 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||
|
||||
## Profiling
|
||||
|
||||
profile-linux:
|
||||
echo "Requires perf, which depends on the kernel version, and might be in linux-tools package or similar"
|
||||
echo "Must be run as sudo"
|
||||
$(CC) $(SRC) $(OPENMP) $(MATH) -o $(OUTPUT)
|
||||
# ./$(OUTPUT)
|
||||
# gprof:
|
||||
# gprof $(OUTPUT) gmon.out > analysis.txt
|
||||
# rm gmon.out
|
||||
# vim analysis.txt
|
||||
# rm analysis.txt
|
||||
# perf:
|
||||
OMP_NUM_THREADS=16 sudo perf record $(OUTPUT)
|
||||
sudo perf report
|
||||
rm perf.data
|
||||
|
||||
|
||||
## Install
|
||||
debian-install-dependencies:
|
||||
sudo apt-get install libomp-dev
|
||||
|
BIN
C/alt/04-factor-out-paralellization/out/samples
Executable file
BIN
C/alt/04-factor-out-paralellization/out/samples
Executable file
Binary file not shown.
260
C/alt/04-factor-out-paralellization/samples.c
Normal file
260
C/alt/04-factor-out-paralellization/samples.c
Normal file
|
@ -0,0 +1,260 @@
|
|||
#include <math.h>
|
||||
#include <omp.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
const float PI = 3.14159265358979323846;
|
||||
|
||||
#define N 1000000
|
||||
|
||||
//Array helpers
|
||||
|
||||
void array_print(float* array, int length)
|
||||
{
|
||||
for (int i = 0; i < length; i++) {
|
||||
printf("item[%d] = %f\n", i, array[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
float array_sum(float* array, int length)
|
||||
{
|
||||
float output = 0.0;
|
||||
for (int i = 0; i < length; i++) {
|
||||
output += array[i];
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
|
||||
{
|
||||
array_cumsummed[0] = array_to_sum[0];
|
||||
for (int i = 1; i < length; i++) {
|
||||
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Split array helpers
|
||||
int split_array_get_length(int index, int total_length, int n_threads)
|
||||
{
|
||||
return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
|
||||
}
|
||||
|
||||
void split_array_allocate(float** meta_array, int length, int divide_into)
|
||||
{
|
||||
int split_array_length;
|
||||
|
||||
for (int i = 0; i < divide_into; i++) {
|
||||
split_array_length = split_array_get_length(i, length, divide_into);
|
||||
meta_array[i] = malloc(split_array_length * sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
void split_array_free(float** meta_array, int divided_into)
|
||||
{
|
||||
for (int i = 0; i < divided_into; i++) {
|
||||
free(meta_array[i]);
|
||||
}
|
||||
free(meta_array);
|
||||
}
|
||||
|
||||
float split_array_sum(float** meta_array, int length, int divided_into)
|
||||
{
|
||||
int i;
|
||||
float output = 0;
|
||||
|
||||
#pragma omp parallel for reduction(+ \
|
||||
: output)
|
||||
for (int i = 0; i < divided_into; i++) {
|
||||
float own_partial_sum = 0;
|
||||
int split_array_length = split_array_get_length(i, length, divided_into);
|
||||
for (int j = 0; j < split_array_length; j++) {
|
||||
own_partial_sum += meta_array[i][j];
|
||||
}
|
||||
output += own_partial_sum;
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
// Pseudo Random number generator
|
||||
|
||||
uint32_t xorshift32(uint32_t* seed)
|
||||
{
|
||||
// Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
|
||||
// See <https://stackoverflow.com/questions/53886131/how-does-xorshift32-works>
|
||||
// https://en.wikipedia.org/wiki/Xorshift
|
||||
// Also some drama: <https://www.pcg-random.org/posts/on-vignas-pcg-critique.html>, <https://prng.di.unimi.it/>
|
||||
|
||||
uint32_t x = *seed;
|
||||
x ^= x << 13;
|
||||
x ^= x >> 17;
|
||||
x ^= x << 5;
|
||||
return *seed = x;
|
||||
}
|
||||
|
||||
// Distribution & sampling functions
|
||||
|
||||
float rand_0_to_1(uint32_t* seed)
|
||||
{
|
||||
return ((float)xorshift32(seed)) / ((float)UINT32_MAX);
|
||||
/*
|
||||
uint32_t x = *seed;
|
||||
x ^= x << 13;
|
||||
x ^= x >> 17;
|
||||
x ^= x << 5;
|
||||
return ((float)(*seed = x))/((float) UINT32_MAX);
|
||||
*/
|
||||
// previously:
|
||||
// ((float)rand_r(seed) / (float)RAND_MAX)
|
||||
// and before that: rand, but it wasn't thread-safe.
|
||||
// See: <https://stackoverflow.com/questions/43151361/how-to-create-thread-safe-random-number-generator-in-c-using-rand-r> for why to use rand_r:
|
||||
// rand() is not thread-safe, as it relies on (shared) hidden seed.
|
||||
}
|
||||
|
||||
float rand_float(float max, uint32_t* seed)
|
||||
{
|
||||
return rand_0_to_1(seed) * max;
|
||||
}
|
||||
|
||||
float ur_normal(uint32_t* seed)
|
||||
{
|
||||
float u1 = rand_0_to_1(seed);
|
||||
float u2 = rand_0_to_1(seed);
|
||||
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
|
||||
return z;
|
||||
}
|
||||
|
||||
float random_uniform(float from, float to, uint32_t* seed)
|
||||
{
|
||||
return rand_0_to_1(seed) * (to - from) + from;
|
||||
}
|
||||
|
||||
float random_normal(float mean, float sigma, uint32_t* seed)
|
||||
{
|
||||
return (mean + sigma * ur_normal(seed));
|
||||
}
|
||||
|
||||
float random_lognormal(float logmean, float logsigma, uint32_t* seed)
|
||||
{
|
||||
return expf(random_normal(logmean, logsigma, seed));
|
||||
}
|
||||
|
||||
float random_to(float low, float high, uint32_t* seed)
|
||||
{
|
||||
const float NORMAL95CONFIDENCE = 1.6448536269514722;
|
||||
float loglow = logf(low);
|
||||
float loghigh = logf(high);
|
||||
float logmean = (loglow + loghigh) / 2;
|
||||
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
|
||||
return random_lognormal(logmean, logsigma, seed);
|
||||
}
|
||||
|
||||
// Mixture function
|
||||
|
||||
float mixture(float (*samplers[])(uint32_t*), float* weights, int n_dists, uint32_t* seed)
|
||||
{
|
||||
|
||||
// You can see a slightly simpler version of this function in the git history
|
||||
// or in alt/C-02-better-algorithm-one-thread/
|
||||
float sum_weights = array_sum(weights, n_dists);
|
||||
float* cumsummed_normalized_weights = malloc(n_dists * sizeof(float));
|
||||
cumsummed_normalized_weights[0] = weights[0] / sum_weights;
|
||||
for (int i = 1; i < n_dists; i++) {
|
||||
cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights;
|
||||
}
|
||||
|
||||
//create var holders
|
||||
float p1, result;
|
||||
int sample_index, i, own_length;
|
||||
p1 = random_uniform(0, 1, seed);
|
||||
for (int i = 0; i < n_dists; i++) {
|
||||
if (p1 < cumsummed_normalized_weights[i]) {
|
||||
result = samplers[i](seed);
|
||||
break;
|
||||
}
|
||||
}
|
||||
free(cumsummed_normalized_weights);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Parallization function
|
||||
void paralellize(float (*sampler)(uint32_t* seed), float** results, int n_threads){
|
||||
|
||||
int sample_index, i, split_array_length;
|
||||
uint32_t** seeds = malloc(n_threads * sizeof(uint32_t*));
|
||||
for (uint32_t i = 0; i < n_threads; i++) {
|
||||
seeds[i] = malloc(sizeof(uint32_t));
|
||||
*seeds[i] = i + 1; // xorshift can't start with 0
|
||||
}
|
||||
|
||||
#pragma omp parallel private(i, sample_index, split_array_length)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < n_threads; i++) {
|
||||
split_array_length = split_array_get_length(i, N, n_threads);
|
||||
for (int j = 0; j < split_array_length; j++) {
|
||||
results[i][j] = sampler(seeds[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < n_threads; i++) {
|
||||
free(seeds[i]);
|
||||
}
|
||||
free(seeds);
|
||||
}
|
||||
|
||||
// Functions used for the BOTEC.
|
||||
// Their type has to be the same, as we will be passing them around.
|
||||
|
||||
float sample_0(uint32_t* seed)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
float sample_1(uint32_t* seed)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
float sample_few(uint32_t* seed)
|
||||
{
|
||||
return random_to(1, 3, seed);
|
||||
}
|
||||
|
||||
float sample_many(uint32_t* seed)
|
||||
{
|
||||
return random_to(2, 10, seed);
|
||||
}
|
||||
|
||||
float sample_mixture(uint32_t* seed){
|
||||
float p_a, p_b, p_c;
|
||||
|
||||
// Initialize variables
|
||||
p_a = 0.8;
|
||||
p_b = 0.5;
|
||||
p_c = p_a * p_b;
|
||||
|
||||
// Generate mixture
|
||||
int n_dists = 4;
|
||||
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
||||
float (*samplers[])(uint32_t*) = { sample_0, sample_1, sample_few, sample_many };
|
||||
|
||||
return mixture(samplers, weights, n_dists, seed);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int n_threads = omp_get_max_threads();
|
||||
// printf("Max threads: %d\n", n_threads);
|
||||
// omp_set_num_threads(n_threads);
|
||||
float** split_array_results = malloc(n_threads * sizeof(float*));
|
||||
split_array_allocate(split_array_results, N, n_threads);
|
||||
|
||||
paralellize(sample_mixture, split_array_results, n_threads);
|
||||
printf("Sum(split_array_results, N)/N = %f\n", split_array_sum(split_array_results, N, n_threads) / N);
|
||||
|
||||
split_array_free(split_array_results, n_threads);
|
||||
return 0;
|
||||
}
|
13
C/samples.c
13
C/samples.c
|
@ -1,7 +1,7 @@
|
|||
#include <omp.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <omp.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
const float PI = 3.14159265358979323846;
|
||||
|
@ -64,7 +64,8 @@ float split_array_sum(float** meta_array, int length, int divided_into)
|
|||
int i;
|
||||
float output = 0;
|
||||
|
||||
#pragma omp parallel for reduction(+:output)
|
||||
#pragma omp parallel for reduction(+ \
|
||||
: output)
|
||||
for (int i = 0; i < divided_into; i++) {
|
||||
float own_partial_sum = 0;
|
||||
int split_array_length = split_array_get_length(i, length, divided_into);
|
||||
|
@ -74,7 +75,6 @@ float split_array_sum(float** meta_array, int length, int divided_into)
|
|||
output += own_partial_sum;
|
||||
}
|
||||
return output;
|
||||
|
||||
}
|
||||
|
||||
// Pseudo Random number generator
|
||||
|
@ -95,7 +95,8 @@ uint32_t xorshift32(uint32_t* seed)
|
|||
|
||||
// Distribution & sampling functions
|
||||
|
||||
float rand_0_to_1(uint32_t* seed){
|
||||
float rand_0_to_1(uint32_t* seed)
|
||||
{
|
||||
return ((float)xorshift32(seed)) / ((float)UINT32_MAX);
|
||||
/*
|
||||
uint32_t x = *seed;
|
||||
|
@ -153,7 +154,7 @@ float random_to(float low, float high, uint32_t* seed)
|
|||
void mixture(float (*samplers[])(uint32_t*), float* weights, int n_dists, float** results, int n_threads)
|
||||
{
|
||||
// You can see a simpler version of this function in the git history
|
||||
// or in C-02-better-algorithm-one-thread/
|
||||
// or in alt/C-02-better-algorithm-one-thread/
|
||||
float sum_weights = array_sum(weights, n_dists);
|
||||
float* cumsummed_normalized_weights = malloc(n_dists * sizeof(float));
|
||||
cumsummed_normalized_weights[0] = weights[0] / sum_weights;
|
||||
|
|
|
@ -133,7 +133,7 @@ The beautiful thing about bc is that it's an arbitrary precision calculator:
|
|||
- it's not going to get floating point overflows, unlike practically everything else. Try `1000000001.0 ** 1000000.0` in OCaml, and you will get infinity, try p(1000000000.0, 1000000.0) and you will get a large power of 10 in bc.
|
||||
- you can always trade get more precision (at the cost of longer running times). Could be useful if you were working with tricky long tails.
|
||||
|
||||
I decided to go with [Gavin Howard's bc](https://git.gavinhoward.com/gavin/bc), because I've been following the guy some time, and I respect him. It also had some crucial extensions, like a random number generator and
|
||||
I decided to go with [Gavin Howard's bc](https://git.gavinhoward.com/gavin/bc), because I've been following the guy some time, and I respect him. It also had some crucial extensions, like a random number generator and allowing specifying functions and variables with names longer than one letter.
|
||||
|
||||
### Overall thoughts
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user