reorganize C code
This commit is contained in:
parent
ef04e0349a
commit
ff3685766b
|
@ -1,32 +0,0 @@
|
||||||
# C-Optimized
|
|
||||||
|
|
||||||
An optimized version of the original C implementation.
|
|
||||||
|
|
||||||
The main changes are:
|
|
||||||
|
|
||||||
- an optimization of the mixture function (it passes the functions instead of the whole arrays, reducing in great measure the memory usage and the computation time) and
|
|
||||||
- the implementation of multi-threading with OpenMP.
|
|
||||||
|
|
||||||
## Performance
|
|
||||||
|
|
||||||
The mean time of execution is 6 ms. With the following distribution:
|
|
||||||
|
|
||||||
![Time histogram](https://i.imgur.com/6iT2PkF.png)
|
|
||||||
|
|
||||||
The hardware used has been an AMD 5800x3D and 16GB of DDR4-3200 MHz.
|
|
||||||
|
|
||||||
Also, the time data has been collected by executing the interior of the main() function 1000 times in a for loop, not executing the program itself 1000 times.
|
|
||||||
|
|
||||||
## Multithreading
|
|
||||||
|
|
||||||
Take into account that the multi-threading introduces a bit of dispersion in the execution time due to the creation and destruction of threads.
|
|
||||||
|
|
||||||
In Nuño's machine, multithreading actually introduces a noticeable slowdown factor.
|
|
||||||
|
|
||||||
## To do
|
|
||||||
|
|
||||||
- [ ] Use proper profiling tool to capture timing with 1M samples.
|
|
||||||
- [ ] Update above with correct timing
|
|
||||||
- [ ] Add Windows/Powershell time-measuring commands
|
|
||||||
- [ ] Add CUDA?
|
|
||||||
- [ ] See if program can be reworded so as to use multithreading effectively, e.g., so that you see speed gains proportional to the number of threads used
|
|
|
@ -1,82 +0,0 @@
|
||||||
# Interface:
|
|
||||||
# make
|
|
||||||
# make build
|
|
||||||
# make format
|
|
||||||
# make run
|
|
||||||
|
|
||||||
# Compiler
|
|
||||||
CC=gcc
|
|
||||||
# CC=tcc # <= faster compilation
|
|
||||||
|
|
||||||
# Main file
|
|
||||||
SRC=samples.c
|
|
||||||
OUTPUT=out/samples
|
|
||||||
|
|
||||||
SRC_ONE_THREAD=./samples-one-thread.c
|
|
||||||
OUTPUT_ONE_THREAD=out/samples-one-thread
|
|
||||||
|
|
||||||
## Dependencies
|
|
||||||
# Has no dependencies
|
|
||||||
MATH=-lm
|
|
||||||
|
|
||||||
## Flags
|
|
||||||
DEBUG= #'-g'
|
|
||||||
STANDARD=-std=c99
|
|
||||||
WARNINGS=-Wall
|
|
||||||
OPTIMIZED=-O3 #-O3 actually gives better performance than -Ofast, at least for this version
|
|
||||||
OPENMP=-fopenmp
|
|
||||||
|
|
||||||
## Formatter
|
|
||||||
STYLE_BLUEPRINT=webkit
|
|
||||||
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
|
||||||
|
|
||||||
## make build
|
|
||||||
build: $(SRC)
|
|
||||||
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(OPENMP) $(MATH) -o $(OUTPUT)
|
|
||||||
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC_ONE_THREAD) $(OPENMP) $(MATH) -o $(OUTPUT_ONE_THREAD)
|
|
||||||
|
|
||||||
format: $(SRC)
|
|
||||||
$(FORMATTER) $(SRC)
|
|
||||||
|
|
||||||
run: $(SRC) $(OUTPUT)
|
|
||||||
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
|
||||||
./$(OUTPUT_ONE_THREAD)
|
|
||||||
|
|
||||||
multi:
|
|
||||||
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=2 ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=4 ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=8 ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=16 ./$(OUTPUT) && echo
|
|
||||||
./$(OUTPUT_ONE_THREAD) && echo
|
|
||||||
|
|
||||||
time-linux-simple:
|
|
||||||
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
|
||||||
OMP_NUM_THREADS=1 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=2 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=4 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=8 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
|
||||||
OMP_NUM_THREADS=16 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
|
||||||
/bin/time -f "Time: %es" ./$(OUTPUT_ONE_THREAD) && echo
|
|
||||||
|
|
||||||
time-linux:
|
|
||||||
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
|
||||||
|
|
||||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=1 $(OUTPUT)"
|
|
||||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=1 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 1 thread: |" | sed 's|$$|ms|' && echo
|
|
||||||
|
|
||||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=2 $(OUTPUT)"
|
|
||||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=2 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 2 threads: |" | sed 's|$$|ms|' && echo
|
|
||||||
|
|
||||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=4 $(OUTPUT)"
|
|
||||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=4 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time for 4 threads: |" | sed 's|$$|ms|' && echo
|
|
||||||
|
|
||||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=8 $(OUTPUT)"
|
|
||||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=8 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 8 threads: |" | sed 's|$$|ms|' && echo
|
|
||||||
|
|
||||||
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=16 $(OUTPUT)"
|
|
||||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=16 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 16 threads: |" | sed 's|$$|ms|' && echo
|
|
||||||
|
|
||||||
debian-install-dependencies:
|
|
||||||
sudo apt-get install libomp-dev
|
|
||||||
|
|
|
@ -1,281 +0,0 @@
|
||||||
#include <math.h>
|
|
||||||
#include <omp.h>
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <time.h>
|
|
||||||
|
|
||||||
const float PI = 3.14159265358979323846;
|
|
||||||
|
|
||||||
#define N 1000000
|
|
||||||
|
|
||||||
//Array helpers
|
|
||||||
|
|
||||||
void array_print(float* array, int length)
|
|
||||||
{
|
|
||||||
for (int i = 0; i < length; i++) {
|
|
||||||
printf("item[%d] = %f\n", i, array[i]);
|
|
||||||
}
|
|
||||||
printf("\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
void array_fill(float* array, int length, float item)
|
|
||||||
{
|
|
||||||
int i;
|
|
||||||
#pragma omp private(i)
|
|
||||||
{
|
|
||||||
#pragma omp for
|
|
||||||
for (i = 0; i < length; i++) {
|
|
||||||
array[i] = item;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float array_sum(float* array, int length)
|
|
||||||
{
|
|
||||||
float output = 0.0;
|
|
||||||
for (int i = 0; i < length; i++) {
|
|
||||||
output += array[i];
|
|
||||||
}
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
|
|
||||||
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
|
|
||||||
{
|
|
||||||
array_cumsummed[0] = array_to_sum[0];
|
|
||||||
for (int i = 1; i < length; i++) {
|
|
||||||
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float rand_float(float to, unsigned int* seed)
|
|
||||||
{
|
|
||||||
return ((float)rand_r(seed) / (float)RAND_MAX) * to;
|
|
||||||
// See: <https://stackoverflow.com/questions/43151361/how-to-create-thread-safe-random-number-generator-in-c-using-rand-r>
|
|
||||||
// rand() is not thread-safe, as it relies on (shared) hidden state.
|
|
||||||
}
|
|
||||||
|
|
||||||
float ur_normal(unsigned int* seed)
|
|
||||||
{
|
|
||||||
float u1 = rand_float(1.0, seed);
|
|
||||||
float u2 = rand_float(1.0, seed);
|
|
||||||
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
|
|
||||||
return z;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline float random_uniform(float from, float to, unsigned int* seed)
|
|
||||||
{
|
|
||||||
return ((float) rand_r(seed) / (float)RAND_MAX) * (to - from) + from;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline float random_normal(float mean, float sigma, unsigned int* seed)
|
|
||||||
{
|
|
||||||
return (mean + sigma * ur_normal(seed));
|
|
||||||
}
|
|
||||||
|
|
||||||
inline float random_lognormal(float logmean, float logsigma, unsigned int* seed)
|
|
||||||
{
|
|
||||||
return expf(random_normal(logmean, logsigma, seed));
|
|
||||||
}
|
|
||||||
|
|
||||||
inline float random_to(float low, float high, unsigned int* seed)
|
|
||||||
{
|
|
||||||
const float NORMAL95CONFIDENCE = 1.6448536269514722;
|
|
||||||
float loglow = logf(low);
|
|
||||||
float loghigh = logf(high);
|
|
||||||
float logmean = (loglow + loghigh) / 2;
|
|
||||||
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
|
|
||||||
return random_lognormal(logmean, logsigma, seed);
|
|
||||||
}
|
|
||||||
|
|
||||||
int split_array_get_my_length(int index, int total_length, int n_threads)
|
|
||||||
{
|
|
||||||
return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
|
|
||||||
}
|
|
||||||
|
|
||||||
//Old version, don't use it!! Optimized version is called mixture_f. This one is just for display
|
|
||||||
/*
|
|
||||||
void mixture(float* dists[], float* weights, int n_dists, float* results)
|
|
||||||
{
|
|
||||||
float sum_weights = array_sum(weights, n_dists);
|
|
||||||
float* normalized_weights = malloc(n_dists * sizeof(float));
|
|
||||||
for (int i = 0; i < n_dists; i++) {
|
|
||||||
normalized_weights[i] = weights[i] / sum_weights;
|
|
||||||
}
|
|
||||||
|
|
||||||
float* cummulative_weights = malloc(n_dists * sizeof(float));
|
|
||||||
array_cumsum(normalized_weights, cummulative_weights, n_dists);
|
|
||||||
|
|
||||||
//create var holders
|
|
||||||
float p1, p2;
|
|
||||||
int index_found, index_counter, sample_index, i;
|
|
||||||
|
|
||||||
#pragma omp parallel private(i, p1, p2, index_found, index_counter, sample_index)
|
|
||||||
{
|
|
||||||
#pragma omp for
|
|
||||||
for (i = 0; i < N; i++) {
|
|
||||||
p1 = random_uniform(0, 1);
|
|
||||||
p2 = random_uniform(0, 1);
|
|
||||||
|
|
||||||
index_found = 0;
|
|
||||||
index_counter = 0;
|
|
||||||
|
|
||||||
while ((index_found == 0) && (index_counter < n_dists)) {
|
|
||||||
if (p1 < cummulative_weights[index_counter]) {
|
|
||||||
index_found = 1;
|
|
||||||
} else {
|
|
||||||
index_counter++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (index_found != 0) {
|
|
||||||
sample_index = (int)(p2 * N);
|
|
||||||
results[i] = dists[index_counter][sample_index];
|
|
||||||
} else
|
|
||||||
printf("This shouldn't be able to happen.\n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
free(normalized_weights);
|
|
||||||
free(cummulative_weights);
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
void mixture_f(float (*samplers[])(unsigned int* ), float* weights, int n_dists, float** results, int n_threads)
|
|
||||||
{
|
|
||||||
float sum_weights = array_sum(weights, n_dists);
|
|
||||||
float* normalized_weights = malloc(n_dists * sizeof(float));
|
|
||||||
for (int i = 0; i < n_dists; i++) {
|
|
||||||
normalized_weights[i] = weights[i] / sum_weights;
|
|
||||||
}
|
|
||||||
|
|
||||||
float* cummulative_weights = malloc(n_dists * sizeof(float));
|
|
||||||
array_cumsum(normalized_weights, cummulative_weights, n_dists);
|
|
||||||
|
|
||||||
//create var holders
|
|
||||||
float p1;
|
|
||||||
int sample_index, i, own_length;
|
|
||||||
unsigned int* seeds[n_threads];
|
|
||||||
for(unsigned int i=0; i<n_threads; i++){
|
|
||||||
seeds[i] = malloc(sizeof(unsigned int));
|
|
||||||
*seeds[i] = i;
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma omp parallel private(i, p1, sample_index, own_length)
|
|
||||||
{
|
|
||||||
#pragma omp for
|
|
||||||
for (i = 0; i < n_threads; i++) {
|
|
||||||
own_length = split_array_get_my_length(i, N, n_threads);
|
|
||||||
for (int j = 0; j < own_length; j++) {
|
|
||||||
p1 = random_uniform(0, 1, seeds[i]);
|
|
||||||
for (int k = 0; k < n_dists; k++) {
|
|
||||||
if (p1 < cummulative_weights[k]) {
|
|
||||||
results[i][j] = samplers[k](seeds[i]);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
free(normalized_weights);
|
|
||||||
free(cummulative_weights);
|
|
||||||
for(unsigned int i=0; i<n_threads; i++){
|
|
||||||
free(seeds[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float sample_0(unsigned int* seed)
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
float sample_1(unsigned int* seed)
|
|
||||||
{
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
float sample_few(unsigned int* seed)
|
|
||||||
{
|
|
||||||
return random_to(1, 3, seed);
|
|
||||||
}
|
|
||||||
|
|
||||||
float sample_many(unsigned int* seed)
|
|
||||||
{
|
|
||||||
return random_to(2, 10, seed);
|
|
||||||
}
|
|
||||||
|
|
||||||
void split_array_allocate(float** meta_array, int length, int divide_into)
|
|
||||||
{
|
|
||||||
int own_length;
|
|
||||||
|
|
||||||
for (int i = 0; i < divide_into; i++) {
|
|
||||||
own_length = split_array_get_my_length(i, length, divide_into);
|
|
||||||
meta_array[i] = malloc(own_length * sizeof(float));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void split_array_free(float** meta_array, int divided_into)
|
|
||||||
{
|
|
||||||
for (int i = 0; i < divided_into; i++) {
|
|
||||||
free(meta_array[i]);
|
|
||||||
}
|
|
||||||
free(meta_array);
|
|
||||||
}
|
|
||||||
|
|
||||||
float split_array_sum(float** meta_array, int length, int divided_into)
|
|
||||||
{
|
|
||||||
int i;
|
|
||||||
float output;
|
|
||||||
float* partial_sum = malloc(divided_into * sizeof(float));
|
|
||||||
|
|
||||||
#pragma omp private(i) shared(partial_sum)
|
|
||||||
for (int i = 0; i < divided_into; i++) {
|
|
||||||
float own_partial_sum = 0;
|
|
||||||
int own_length = split_array_get_my_length(i, length, divided_into);
|
|
||||||
for (int j = 0; j < own_length; j++) {
|
|
||||||
own_partial_sum += meta_array[i][j];
|
|
||||||
}
|
|
||||||
partial_sum[i] = own_partial_sum;
|
|
||||||
}
|
|
||||||
for (int i = 0; i < divided_into; i++) {
|
|
||||||
output += partial_sum[i];
|
|
||||||
}
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
//initialize randomness
|
|
||||||
srand(time(NULL));
|
|
||||||
|
|
||||||
// clock_t start, end;
|
|
||||||
// start = clock();
|
|
||||||
|
|
||||||
// Toy example
|
|
||||||
// Declare variables in play
|
|
||||||
float p_a, p_b, p_c;
|
|
||||||
int n_threads = omp_get_max_threads();
|
|
||||||
// printf("Max threads: %d\n", n_threads);
|
|
||||||
// omp_set_num_threads(n_threads);
|
|
||||||
float** dist_mixture = malloc(n_threads * sizeof(float*));
|
|
||||||
split_array_allocate(dist_mixture, N, n_threads);
|
|
||||||
|
|
||||||
// Initialize variables
|
|
||||||
p_a = 0.8;
|
|
||||||
p_b = 0.5;
|
|
||||||
p_c = p_a * p_b;
|
|
||||||
|
|
||||||
// Generate mixture
|
|
||||||
int n_dists = 4;
|
|
||||||
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
|
||||||
float (*samplers[])(unsigned int* ) = { sample_0, sample_1, sample_few, sample_many };
|
|
||||||
|
|
||||||
mixture_f(samplers, weights, n_dists, dist_mixture, n_threads);
|
|
||||||
printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N);
|
|
||||||
// array_print(dist_mixture[0], N);
|
|
||||||
split_array_free(dist_mixture, n_threads);
|
|
||||||
|
|
||||||
// end = clock();
|
|
||||||
// printf("Time (ms): %f\n", ((double)(end - start)) / (CLOCKS_PER_SEC) * 1000);
|
|
||||||
// ^ Will only measure how long it takes the inner main to run, not the whole program,
|
|
||||||
// including e.g., loading the program into memory or smth.
|
|
||||||
// Also CLOCKS_PER_SEC in POSIX is a constant equal to 1000000.
|
|
||||||
// See: https://stackoverflow.com/questions/10455905/why-is-clocks-per-sec-not-the-actual-number-of-clocks-per-second
|
|
||||||
return 0;
|
|
||||||
}
|
|
53
C/C-01-simple/makefile
Normal file
53
C/C-01-simple/makefile
Normal file
|
@ -0,0 +1,53 @@
|
||||||
|
# Interface:
|
||||||
|
# make
|
||||||
|
# make build
|
||||||
|
# make format
|
||||||
|
# make run
|
||||||
|
|
||||||
|
# Compiler
|
||||||
|
CC=gcc
|
||||||
|
# CC=tcc # <= faster compilation
|
||||||
|
|
||||||
|
# Main file
|
||||||
|
SRC=samples.c
|
||||||
|
OUTPUT=samples
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
DEPS='gsl'
|
||||||
|
|
||||||
|
## Flags
|
||||||
|
INCS=`pkg-config --cflags ${DEPS}`
|
||||||
|
LIBS=`pkg-config --libs ${DEPS}`
|
||||||
|
DEBUG= #'-g'
|
||||||
|
STANDARD=-std=c99
|
||||||
|
WARNINGS=-Wall
|
||||||
|
FAST=-Ofast
|
||||||
|
## Formatter
|
||||||
|
STYLE_BLUEPRINT=webkit
|
||||||
|
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
||||||
|
|
||||||
|
## make build
|
||||||
|
build: $(SRC)
|
||||||
|
$(CC) $(DEBUG) $(INCS) $(PLUGS) $(SRC) -o samples $(LIBS)
|
||||||
|
|
||||||
|
fast: $(SRC)
|
||||||
|
$(CC) $(FAST) $(DEBUG) $(INCS) $(PLUGS) $(SRC) -o samples $(LIBS)
|
||||||
|
|
||||||
|
format: $(SRC)
|
||||||
|
$(FORMATTER) $(SRC)
|
||||||
|
|
||||||
|
run: $(SRC) $(OUTPUT)
|
||||||
|
echo "Increasing stack size limit, because we are dealing with 1M samples"
|
||||||
|
# ulimit: increase stack size limit
|
||||||
|
# -Ss: the soft limit. If you set the hard limit, you then can't raise it
|
||||||
|
# 256000: around 250Mbs, if I'm reading it correctly.
|
||||||
|
# Then run the program
|
||||||
|
ulimit -Ss 256000 && ./$(OUTPUT)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Old:
|
||||||
|
# Link libraries, for good measure
|
||||||
|
# LD_LIBRARY_PATH=/usr/local/lib
|
||||||
|
# export LD_LIBRARY_PATH
|
||||||
|
|
157
C/C-01-simple/samples.c
Normal file
157
C/C-01-simple/samples.c
Normal file
|
@ -0,0 +1,157 @@
|
||||||
|
#include <gsl/gsl_randist.h>
|
||||||
|
#include <gsl/gsl_rng.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
#define N 1000000
|
||||||
|
/*
|
||||||
|
* For very high values of N, you will want to increase the maximum stack trace, otherwise you will suffer a segmentation fault
|
||||||
|
* In Ubuntu/bash you can do this with $ ulimit -Ss 256000 ## ~256Mbs
|
||||||
|
* And confirm it with $ ulimit -a
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Helpers */
|
||||||
|
void print(double* ys)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
printf("%f\n", ys[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
void fill(double* ys, float f)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
ys[i] = f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
double sum(double* ps, int n)
|
||||||
|
{
|
||||||
|
double result = 0;
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
result += ps[i];
|
||||||
|
}
|
||||||
|
return (result);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cumsum(double* ps, double* rs, int n)
|
||||||
|
{
|
||||||
|
double counter = 0;
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
counter += ps[i];
|
||||||
|
rs[i] = counter;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Distributions*/
|
||||||
|
void normal(gsl_rng* r, double* ys, double mean, double std)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
ys[i] = mean + gsl_ran_gaussian(r, std);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void lognormal(gsl_rng* r, double* ys, double zeta, double sigma)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
ys[i] = gsl_ran_lognormal(r, zeta, sigma);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void to(gsl_rng* r, double* ys, double low, double high)
|
||||||
|
{
|
||||||
|
double normal95confidencePoint = 1.6448536269514722;
|
||||||
|
double log_low = log(low);
|
||||||
|
double log_high = log(high);
|
||||||
|
double zeta = (log_low + log_high) / 2;
|
||||||
|
double sigma = (log_high - log_low) / (2.0 * normal95confidencePoint);
|
||||||
|
lognormal(r, ys, zeta, sigma);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Mixture of distributions */
|
||||||
|
void mixture(gsl_rng* r, double* dists[], double* weights, int n, double* results)
|
||||||
|
{
|
||||||
|
/* Get cummulative, normalized weights */
|
||||||
|
double sum_weights = sum(weights, n);
|
||||||
|
double normalized_weights[n];
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
normalized_weights[i] = weights[i] / sum_weights;
|
||||||
|
}
|
||||||
|
double cummulative_weights[n];
|
||||||
|
cumsum(normalized_weights, cummulative_weights, n);
|
||||||
|
|
||||||
|
/* Get N samples, drawn from the different distributions in proportion to their weights. */
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
double p_1 = gsl_rng_uniform(r);
|
||||||
|
double p_2 = gsl_rng_uniform(r);
|
||||||
|
|
||||||
|
int index_found = 0;
|
||||||
|
int index_counter = 0;
|
||||||
|
while ((index_found == 0) && (index_counter < n)) {
|
||||||
|
if (p_1 < cummulative_weights[index_counter]) {
|
||||||
|
index_found = 1;
|
||||||
|
} else {
|
||||||
|
index_counter++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (index_found == 0) {
|
||||||
|
printf("\nThis shouldn't be able to happen");
|
||||||
|
// gsl_rng_free (r);
|
||||||
|
// abort(); // this shouldn't have happened.
|
||||||
|
|
||||||
|
} else {
|
||||||
|
int sample_index = (int)floor(p_2 * N);
|
||||||
|
results[i] = dists[index_counter][sample_index];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Main */
|
||||||
|
int main(void)
|
||||||
|
{
|
||||||
|
// Start clock
|
||||||
|
clock_t start, end;
|
||||||
|
start = clock();
|
||||||
|
|
||||||
|
/* Initialize GNU Statistical Library (GSL) stuff */
|
||||||
|
const gsl_rng_type* T;
|
||||||
|
gsl_rng* r;
|
||||||
|
// gsl_rng_env_setup();
|
||||||
|
T = gsl_rng_default;
|
||||||
|
r = gsl_rng_alloc(T);
|
||||||
|
|
||||||
|
/* Toy example */
|
||||||
|
/* Declare variables in play */
|
||||||
|
double p_a, p_b, p_c;
|
||||||
|
double dist_none[N], dist_one[N], dist_few[N], dist_many[N], dist_mixture[N];
|
||||||
|
|
||||||
|
/* Initialize variables */
|
||||||
|
p_a = 0.8;
|
||||||
|
p_b = 0.5;
|
||||||
|
p_c = p_a * p_b;
|
||||||
|
|
||||||
|
fill(dist_none, 0);
|
||||||
|
fill(dist_one, 1);
|
||||||
|
to(r, dist_few, 1, 3);
|
||||||
|
to(r, dist_many, 2, 10);
|
||||||
|
|
||||||
|
/* Generate mixture */
|
||||||
|
int n = 4;
|
||||||
|
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
||||||
|
double* dists[] = { dist_none, dist_one, dist_few, dist_many };
|
||||||
|
|
||||||
|
mixture(r, dists, weights, n, dist_mixture);
|
||||||
|
printf("%f\n", sum(dist_mixture, N) / N);
|
||||||
|
|
||||||
|
/* Clean up GSL */
|
||||||
|
gsl_rng_free(r);
|
||||||
|
|
||||||
|
// End clock
|
||||||
|
end = clock();
|
||||||
|
printf("Total time (ms): %f\n", ((double)(end - start)) / CLOCKS_PER_SEC * 1000);
|
||||||
|
/* Return success*/
|
||||||
|
return EXIT_SUCCESS;
|
||||||
|
}
|
53
C/C-02-better-algorithm-one-thread/makefile
Normal file
53
C/C-02-better-algorithm-one-thread/makefile
Normal file
|
@ -0,0 +1,53 @@
|
||||||
|
# Interface:
|
||||||
|
# make
|
||||||
|
# make build
|
||||||
|
# make format
|
||||||
|
# make run
|
||||||
|
|
||||||
|
# Compiler
|
||||||
|
CC=gcc
|
||||||
|
# CC=tcc # <= faster compilation
|
||||||
|
|
||||||
|
# Main file
|
||||||
|
|
||||||
|
SRC_ONE_THREAD=./samples-one-thread.c
|
||||||
|
OUTPUT_ONE_THREAD=out/samples-one-thread
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
# Has no dependencies
|
||||||
|
MATH=-lm
|
||||||
|
|
||||||
|
## Flags
|
||||||
|
DEBUG= #'-g'
|
||||||
|
STANDARD=-std=c99
|
||||||
|
WARNINGS=-Wall
|
||||||
|
OPTIMIZED=-O3 #-O3 actually gives better performance than -Ofast, at least for this version
|
||||||
|
OPENMP=-fopenmp
|
||||||
|
|
||||||
|
## Formatter
|
||||||
|
STYLE_BLUEPRINT=webkit
|
||||||
|
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
||||||
|
|
||||||
|
## make build
|
||||||
|
build: $(SRC_ONE_THREAD)
|
||||||
|
mkdir -p out
|
||||||
|
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC_ONE_THREAD) $(OPENMP) $(MATH) -o $(OUTPUT_ONE_THREAD)
|
||||||
|
|
||||||
|
format: $(SRC_ONE_THREAD)
|
||||||
|
$(FORMATTER) $(SRC_ONE_THREAD)
|
||||||
|
|
||||||
|
run: $(SRC_ONE_THREAD) $(OUTPUT_ONE_THREAD)
|
||||||
|
./$(OUTPUT_ONE_THREAD)
|
||||||
|
|
||||||
|
time-linux:
|
||||||
|
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||||
|
@echo "Running 100x and taking avg time: $(OUTPUT_ONE_THREAD)"
|
||||||
|
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do $(OUTPUT_ONE_THREAD); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time: |" | sed 's|$$|ms|' && echo
|
||||||
|
|
||||||
|
time-linux-simple:
|
||||||
|
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||||
|
/bin/time -f "Time: %es" ./$(OUTPUT_ONE_THREAD) && echo
|
||||||
|
|
||||||
|
debian-install-dependencies:
|
||||||
|
sudo apt-get install libomp-dev
|
||||||
|
|
BIN
C/C-02-better-algorithm-one-thread/out/samples-one-thread
Executable file
BIN
C/C-02-better-algorithm-one-thread/out/samples-one-thread
Executable file
Binary file not shown.
|
@ -5,7 +5,7 @@
|
||||||
|
|
||||||
const float PI = 3.14159265358979323846;
|
const float PI = 3.14159265358979323846;
|
||||||
|
|
||||||
#define N 10000000
|
#define N 1000000
|
||||||
|
|
||||||
//Array helpers
|
//Array helpers
|
||||||
|
|
15
C/README.md
Normal file
15
C/README.md
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
# Time to BOTEC in C
|
||||||
|
|
||||||
|
This repository contains a few implementations of a simple botec (back-of-the-envelope) calculation in C:
|
||||||
|
|
||||||
|
- In the folder C-01-simple/, you can see a simple implementation, which passes large arrays
|
||||||
|
- In the folder C-02-better-algorithm-one-thread/ you can see a better implementations, that passes around pointers to functions, which makes the implementation more efficient
|
||||||
|
- In the top level, you can see an implementation that uses the better implementation in C-02..., and that also implements multithreading using OpenMP
|
||||||
|
|
||||||
|
## To do
|
||||||
|
|
||||||
|
- [ ] Update repository with correct timing
|
||||||
|
- [ ] Add Windows/Powershell time-measuring commands
|
||||||
|
- [ ] Add CUDA?
|
||||||
|
- [x] Use better profiling approach to capture timing with 1M samples.
|
||||||
|
- [x] See if program can be reworded so as to use multithreading effectively, e.g., so that you see speed gains proportional to the number of threads used
|
135
C/makefile
135
C/makefile
|
@ -1,53 +1,82 @@
|
||||||
# Interface:
|
# Interface:
|
||||||
# make
|
# make
|
||||||
# make build
|
# make build
|
||||||
# make format
|
# make format
|
||||||
# make run
|
# make run
|
||||||
|
|
||||||
# Compiler
|
# Compiler
|
||||||
CC=gcc
|
CC=gcc
|
||||||
# CC=tcc # <= faster compilation
|
# CC=tcc # <= faster compilation
|
||||||
|
|
||||||
# Main file
|
# Main file
|
||||||
SRC=samples.c
|
SRC=samples.c
|
||||||
OUTPUT=samples
|
OUTPUT=out/samples
|
||||||
|
|
||||||
## Dependencies
|
SRC_ONE_THREAD=./samples-one-thread.c
|
||||||
DEPS='gsl'
|
OUTPUT_ONE_THREAD=out/samples-one-thread
|
||||||
|
|
||||||
## Flags
|
## Dependencies
|
||||||
INCS=`pkg-config --cflags ${DEPS}`
|
# Has no dependencies
|
||||||
LIBS=`pkg-config --libs ${DEPS}`
|
MATH=-lm
|
||||||
DEBUG= #'-g'
|
|
||||||
STANDARD=-std=c99
|
## Flags
|
||||||
WARNINGS=-Wall
|
DEBUG= #'-g'
|
||||||
FAST=-Ofast
|
STANDARD=-std=c99
|
||||||
## Formatter
|
WARNINGS=-Wall
|
||||||
STYLE_BLUEPRINT=webkit
|
OPTIMIZED=-O3 #-O3 actually gives better performance than -Ofast, at least for this version
|
||||||
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
OPENMP=-fopenmp
|
||||||
|
|
||||||
## make build
|
## Formatter
|
||||||
build: $(SRC)
|
STYLE_BLUEPRINT=webkit
|
||||||
$(CC) $(DEBUG) $(INCS) $(PLUGS) $(SRC) -o samples $(LIBS)
|
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
||||||
|
|
||||||
fast: $(SRC)
|
## make build
|
||||||
$(CC) $(FAST) $(DEBUG) $(INCS) $(PLUGS) $(SRC) -o samples $(LIBS)
|
build: $(SRC)
|
||||||
|
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(OPENMP) $(MATH) -o $(OUTPUT)
|
||||||
format: $(SRC)
|
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC_ONE_THREAD) $(OPENMP) $(MATH) -o $(OUTPUT_ONE_THREAD)
|
||||||
$(FORMATTER) $(SRC)
|
|
||||||
|
format: $(SRC)
|
||||||
run: $(SRC) $(OUTPUT)
|
$(FORMATTER) $(SRC)
|
||||||
echo "Increasing stack size limit, because we are dealing with 1M samples"
|
|
||||||
# ulimit: increase stack size limit
|
run: $(SRC) $(OUTPUT)
|
||||||
# -Ss: the soft limit. If you set the hard limit, you then can't raise it
|
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
||||||
# 256000: around 250Mbs, if I'm reading it correctly.
|
./$(OUTPUT_ONE_THREAD)
|
||||||
# Then run the program
|
|
||||||
ulimit -Ss 256000 && ./$(OUTPUT)
|
multi:
|
||||||
|
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
||||||
|
OMP_NUM_THREADS=2 ./$(OUTPUT) && echo
|
||||||
|
OMP_NUM_THREADS=4 ./$(OUTPUT) && echo
|
||||||
# Old:
|
OMP_NUM_THREADS=8 ./$(OUTPUT) && echo
|
||||||
# Link libraries, for good measure
|
OMP_NUM_THREADS=16 ./$(OUTPUT) && echo
|
||||||
# LD_LIBRARY_PATH=/usr/local/lib
|
./$(OUTPUT_ONE_THREAD) && echo
|
||||||
# export LD_LIBRARY_PATH
|
|
||||||
|
time-linux:
|
||||||
|
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||||
|
|
||||||
|
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=1 $(OUTPUT)"
|
||||||
|
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=1 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 1 thread: |" | sed 's|$$|ms|' && echo
|
||||||
|
|
||||||
|
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=2 $(OUTPUT)"
|
||||||
|
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=2 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 2 threads: |" | sed 's|$$|ms|' && echo
|
||||||
|
|
||||||
|
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=4 $(OUTPUT)"
|
||||||
|
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=4 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time for 4 threads: |" | sed 's|$$|ms|' && echo
|
||||||
|
|
||||||
|
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=8 $(OUTPUT)"
|
||||||
|
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=8 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 8 threads: |" | sed 's|$$|ms|' && echo
|
||||||
|
|
||||||
|
@echo "Running 100x and taking avg time: OMP_NUM_THREADS=16 $(OUTPUT)"
|
||||||
|
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do OMP_NUM_THREADS=16 $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 16 threads: |" | sed 's|$$|ms|' && echo
|
||||||
|
|
||||||
|
time-linux-simple:
|
||||||
|
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||||
|
OMP_NUM_THREADS=1 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||||
|
OMP_NUM_THREADS=2 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||||
|
OMP_NUM_THREADS=4 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||||
|
OMP_NUM_THREADS=8 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||||
|
OMP_NUM_THREADS=16 /bin/time -f "Time: %es" ./$(OUTPUT) && echo
|
||||||
|
/bin/time -f "Time: %es" ./$(OUTPUT_ONE_THREAD) && echo
|
||||||
|
|
||||||
|
debian-install-dependencies:
|
||||||
|
sudo apt-get install libomp-dev
|
||||||
|
|
||||||
|
|
438
C/samples.c
438
C/samples.c
|
@ -1,157 +1,281 @@
|
||||||
#include <gsl/gsl_randist.h>
|
#include <math.h>
|
||||||
#include <gsl/gsl_rng.h>
|
#include <omp.h>
|
||||||
#include <math.h>
|
#include <stdio.h>
|
||||||
#include <stdio.h>
|
#include <stdlib.h>
|
||||||
#include <stdlib.h>
|
#include <time.h>
|
||||||
#include <time.h>
|
|
||||||
|
const float PI = 3.14159265358979323846;
|
||||||
#define N 1000000
|
|
||||||
/*
|
#define N 1000000
|
||||||
* For very high values of N, you will want to increase the maximum stack trace, otherwise you will suffer a segmentation fault
|
|
||||||
* In Ubuntu/bash you can do this with $ ulimit -Ss 256000 ## ~256Mbs
|
//Array helpers
|
||||||
* And confirm it with $ ulimit -a
|
|
||||||
*/
|
void array_print(float* array, int length)
|
||||||
|
{
|
||||||
/* Helpers */
|
for (int i = 0; i < length; i++) {
|
||||||
void print(double* ys)
|
printf("item[%d] = %f\n", i, array[i]);
|
||||||
{
|
}
|
||||||
for (int i = 0; i < N; i++) {
|
printf("\n");
|
||||||
printf("%f\n", ys[i]);
|
}
|
||||||
}
|
|
||||||
printf("\n");
|
void array_fill(float* array, int length, float item)
|
||||||
}
|
{
|
||||||
|
int i;
|
||||||
void fill(double* ys, float f)
|
#pragma omp private(i)
|
||||||
{
|
{
|
||||||
for (int i = 0; i < N; i++) {
|
#pragma omp for
|
||||||
ys[i] = f;
|
for (i = 0; i < length; i++) {
|
||||||
}
|
array[i] = item;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
double sum(double* ps, int n)
|
}
|
||||||
{
|
|
||||||
double result = 0;
|
float array_sum(float* array, int length)
|
||||||
for (int i = 0; i < n; i++) {
|
{
|
||||||
result += ps[i];
|
float output = 0.0;
|
||||||
}
|
for (int i = 0; i < length; i++) {
|
||||||
return (result);
|
output += array[i];
|
||||||
}
|
}
|
||||||
|
return output;
|
||||||
void cumsum(double* ps, double* rs, int n)
|
}
|
||||||
{
|
|
||||||
double counter = 0;
|
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
|
||||||
for (int i = 0; i < n; i++) {
|
{
|
||||||
counter += ps[i];
|
array_cumsummed[0] = array_to_sum[0];
|
||||||
rs[i] = counter;
|
for (int i = 1; i < length; i++) {
|
||||||
}
|
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
|
||||||
}
|
}
|
||||||
|
}
|
||||||
/* Distributions*/
|
|
||||||
void normal(gsl_rng* r, double* ys, double mean, double std)
|
float rand_float(float to, unsigned int* seed)
|
||||||
{
|
{
|
||||||
for (int i = 0; i < N; i++) {
|
return ((float)rand_r(seed) / (float)RAND_MAX) * to;
|
||||||
ys[i] = mean + gsl_ran_gaussian(r, std);
|
// See: <https://stackoverflow.com/questions/43151361/how-to-create-thread-safe-random-number-generator-in-c-using-rand-r>
|
||||||
}
|
// rand() is not thread-safe, as it relies on (shared) hidden state.
|
||||||
}
|
}
|
||||||
|
|
||||||
void lognormal(gsl_rng* r, double* ys, double zeta, double sigma)
|
float ur_normal(unsigned int* seed)
|
||||||
{
|
{
|
||||||
for (int i = 0; i < N; i++) {
|
float u1 = rand_float(1.0, seed);
|
||||||
ys[i] = gsl_ran_lognormal(r, zeta, sigma);
|
float u2 = rand_float(1.0, seed);
|
||||||
}
|
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
|
||||||
}
|
return z;
|
||||||
|
}
|
||||||
void to(gsl_rng* r, double* ys, double low, double high)
|
|
||||||
{
|
inline float random_uniform(float from, float to, unsigned int* seed)
|
||||||
double normal95confidencePoint = 1.6448536269514722;
|
{
|
||||||
double log_low = log(low);
|
return ((float) rand_r(seed) / (float)RAND_MAX) * (to - from) + from;
|
||||||
double log_high = log(high);
|
}
|
||||||
double zeta = (log_low + log_high) / 2;
|
|
||||||
double sigma = (log_high - log_low) / (2.0 * normal95confidencePoint);
|
inline float random_normal(float mean, float sigma, unsigned int* seed)
|
||||||
lognormal(r, ys, zeta, sigma);
|
{
|
||||||
}
|
return (mean + sigma * ur_normal(seed));
|
||||||
|
}
|
||||||
/* Mixture of distributions */
|
|
||||||
void mixture(gsl_rng* r, double* dists[], double* weights, int n, double* results)
|
inline float random_lognormal(float logmean, float logsigma, unsigned int* seed)
|
||||||
{
|
{
|
||||||
/* Get cummulative, normalized weights */
|
return expf(random_normal(logmean, logsigma, seed));
|
||||||
double sum_weights = sum(weights, n);
|
}
|
||||||
double normalized_weights[n];
|
|
||||||
for (int i = 0; i < n; i++) {
|
inline float random_to(float low, float high, unsigned int* seed)
|
||||||
normalized_weights[i] = weights[i] / sum_weights;
|
{
|
||||||
}
|
const float NORMAL95CONFIDENCE = 1.6448536269514722;
|
||||||
double cummulative_weights[n];
|
float loglow = logf(low);
|
||||||
cumsum(normalized_weights, cummulative_weights, n);
|
float loghigh = logf(high);
|
||||||
|
float logmean = (loglow + loghigh) / 2;
|
||||||
/* Get N samples, drawn from the different distributions in proportion to their weights. */
|
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
|
||||||
for (int i = 0; i < N; i++) {
|
return random_lognormal(logmean, logsigma, seed);
|
||||||
double p_1 = gsl_rng_uniform(r);
|
}
|
||||||
double p_2 = gsl_rng_uniform(r);
|
|
||||||
|
int split_array_get_my_length(int index, int total_length, int n_threads)
|
||||||
int index_found = 0;
|
{
|
||||||
int index_counter = 0;
|
return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
|
||||||
while ((index_found == 0) && (index_counter < n)) {
|
}
|
||||||
if (p_1 < cummulative_weights[index_counter]) {
|
|
||||||
index_found = 1;
|
//Old version, don't use it!! Optimized version is called mixture_f. This one is just for display
|
||||||
} else {
|
/*
|
||||||
index_counter++;
|
void mixture(float* dists[], float* weights, int n_dists, float* results)
|
||||||
}
|
{
|
||||||
}
|
float sum_weights = array_sum(weights, n_dists);
|
||||||
if (index_found == 0) {
|
float* normalized_weights = malloc(n_dists * sizeof(float));
|
||||||
printf("\nThis shouldn't be able to happen");
|
for (int i = 0; i < n_dists; i++) {
|
||||||
// gsl_rng_free (r);
|
normalized_weights[i] = weights[i] / sum_weights;
|
||||||
// abort(); // this shouldn't have happened.
|
}
|
||||||
|
|
||||||
} else {
|
float* cummulative_weights = malloc(n_dists * sizeof(float));
|
||||||
int sample_index = (int)floor(p_2 * N);
|
array_cumsum(normalized_weights, cummulative_weights, n_dists);
|
||||||
results[i] = dists[index_counter][sample_index];
|
|
||||||
}
|
//create var holders
|
||||||
}
|
float p1, p2;
|
||||||
}
|
int index_found, index_counter, sample_index, i;
|
||||||
|
|
||||||
/* Main */
|
#pragma omp parallel private(i, p1, p2, index_found, index_counter, sample_index)
|
||||||
int main(void)
|
{
|
||||||
{
|
#pragma omp for
|
||||||
// Start clock
|
for (i = 0; i < N; i++) {
|
||||||
clock_t start, end;
|
p1 = random_uniform(0, 1);
|
||||||
start = clock();
|
p2 = random_uniform(0, 1);
|
||||||
|
|
||||||
/* Initialize GNU Statistical Library (GSL) stuff */
|
index_found = 0;
|
||||||
const gsl_rng_type* T;
|
index_counter = 0;
|
||||||
gsl_rng* r;
|
|
||||||
// gsl_rng_env_setup();
|
while ((index_found == 0) && (index_counter < n_dists)) {
|
||||||
T = gsl_rng_default;
|
if (p1 < cummulative_weights[index_counter]) {
|
||||||
r = gsl_rng_alloc(T);
|
index_found = 1;
|
||||||
|
} else {
|
||||||
/* Toy example */
|
index_counter++;
|
||||||
/* Declare variables in play */
|
}
|
||||||
double p_a, p_b, p_c;
|
}
|
||||||
double dist_none[N], dist_one[N], dist_few[N], dist_many[N], dist_mixture[N];
|
if (index_found != 0) {
|
||||||
|
sample_index = (int)(p2 * N);
|
||||||
/* Initialize variables */
|
results[i] = dists[index_counter][sample_index];
|
||||||
p_a = 0.8;
|
} else
|
||||||
p_b = 0.5;
|
printf("This shouldn't be able to happen.\n");
|
||||||
p_c = p_a * p_b;
|
}
|
||||||
|
}
|
||||||
fill(dist_none, 0);
|
free(normalized_weights);
|
||||||
fill(dist_one, 1);
|
free(cummulative_weights);
|
||||||
to(r, dist_few, 1, 3);
|
}
|
||||||
to(r, dist_many, 2, 10);
|
*/
|
||||||
|
void mixture_f(float (*samplers[])(unsigned int* ), float* weights, int n_dists, float** results, int n_threads)
|
||||||
/* Generate mixture */
|
{
|
||||||
int n = 4;
|
float sum_weights = array_sum(weights, n_dists);
|
||||||
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
float* normalized_weights = malloc(n_dists * sizeof(float));
|
||||||
double* dists[] = { dist_none, dist_one, dist_few, dist_many };
|
for (int i = 0; i < n_dists; i++) {
|
||||||
|
normalized_weights[i] = weights[i] / sum_weights;
|
||||||
mixture(r, dists, weights, n, dist_mixture);
|
}
|
||||||
printf("%f\n", sum(dist_mixture, N) / N);
|
|
||||||
|
float* cummulative_weights = malloc(n_dists * sizeof(float));
|
||||||
/* Clean up GSL */
|
array_cumsum(normalized_weights, cummulative_weights, n_dists);
|
||||||
gsl_rng_free(r);
|
|
||||||
|
//create var holders
|
||||||
// End clock
|
float p1;
|
||||||
end = clock();
|
int sample_index, i, own_length;
|
||||||
printf("Total time (ms): %f\n", ((double)(end - start)) / CLOCKS_PER_SEC * 1000);
|
unsigned int* seeds[n_threads];
|
||||||
/* Return success*/
|
for(unsigned int i=0; i<n_threads; i++){
|
||||||
return EXIT_SUCCESS;
|
seeds[i] = malloc(sizeof(unsigned int));
|
||||||
}
|
*seeds[i] = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma omp parallel private(i, p1, sample_index, own_length)
|
||||||
|
{
|
||||||
|
#pragma omp for
|
||||||
|
for (i = 0; i < n_threads; i++) {
|
||||||
|
own_length = split_array_get_my_length(i, N, n_threads);
|
||||||
|
for (int j = 0; j < own_length; j++) {
|
||||||
|
p1 = random_uniform(0, 1, seeds[i]);
|
||||||
|
for (int k = 0; k < n_dists; k++) {
|
||||||
|
if (p1 < cummulative_weights[k]) {
|
||||||
|
results[i][j] = samplers[k](seeds[i]);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
free(normalized_weights);
|
||||||
|
free(cummulative_weights);
|
||||||
|
for(unsigned int i=0; i<n_threads; i++){
|
||||||
|
free(seeds[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float sample_0(unsigned int* seed)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
float sample_1(unsigned int* seed)
|
||||||
|
{
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
float sample_few(unsigned int* seed)
|
||||||
|
{
|
||||||
|
return random_to(1, 3, seed);
|
||||||
|
}
|
||||||
|
|
||||||
|
float sample_many(unsigned int* seed)
|
||||||
|
{
|
||||||
|
return random_to(2, 10, seed);
|
||||||
|
}
|
||||||
|
|
||||||
|
void split_array_allocate(float** meta_array, int length, int divide_into)
|
||||||
|
{
|
||||||
|
int own_length;
|
||||||
|
|
||||||
|
for (int i = 0; i < divide_into; i++) {
|
||||||
|
own_length = split_array_get_my_length(i, length, divide_into);
|
||||||
|
meta_array[i] = malloc(own_length * sizeof(float));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void split_array_free(float** meta_array, int divided_into)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < divided_into; i++) {
|
||||||
|
free(meta_array[i]);
|
||||||
|
}
|
||||||
|
free(meta_array);
|
||||||
|
}
|
||||||
|
|
||||||
|
float split_array_sum(float** meta_array, int length, int divided_into)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
float output;
|
||||||
|
float* partial_sum = malloc(divided_into * sizeof(float));
|
||||||
|
|
||||||
|
#pragma omp private(i) shared(partial_sum)
|
||||||
|
for (int i = 0; i < divided_into; i++) {
|
||||||
|
float own_partial_sum = 0;
|
||||||
|
int own_length = split_array_get_my_length(i, length, divided_into);
|
||||||
|
for (int j = 0; j < own_length; j++) {
|
||||||
|
own_partial_sum += meta_array[i][j];
|
||||||
|
}
|
||||||
|
partial_sum[i] = own_partial_sum;
|
||||||
|
}
|
||||||
|
for (int i = 0; i < divided_into; i++) {
|
||||||
|
output += partial_sum[i];
|
||||||
|
}
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
//initialize randomness
|
||||||
|
srand(time(NULL));
|
||||||
|
|
||||||
|
// clock_t start, end;
|
||||||
|
// start = clock();
|
||||||
|
|
||||||
|
// Toy example
|
||||||
|
// Declare variables in play
|
||||||
|
float p_a, p_b, p_c;
|
||||||
|
int n_threads = omp_get_max_threads();
|
||||||
|
// printf("Max threads: %d\n", n_threads);
|
||||||
|
// omp_set_num_threads(n_threads);
|
||||||
|
float** dist_mixture = malloc(n_threads * sizeof(float*));
|
||||||
|
split_array_allocate(dist_mixture, N, n_threads);
|
||||||
|
|
||||||
|
// Initialize variables
|
||||||
|
p_a = 0.8;
|
||||||
|
p_b = 0.5;
|
||||||
|
p_c = p_a * p_b;
|
||||||
|
|
||||||
|
// Generate mixture
|
||||||
|
int n_dists = 4;
|
||||||
|
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
||||||
|
float (*samplers[])(unsigned int* ) = { sample_0, sample_1, sample_few, sample_many };
|
||||||
|
|
||||||
|
mixture_f(samplers, weights, n_dists, dist_mixture, n_threads);
|
||||||
|
printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N);
|
||||||
|
// array_print(dist_mixture[0], N);
|
||||||
|
split_array_free(dist_mixture, n_threads);
|
||||||
|
|
||||||
|
// end = clock();
|
||||||
|
// printf("Time (ms): %f\n", ((double)(end - start)) / (CLOCKS_PER_SEC) * 1000);
|
||||||
|
// ^ Will only measure how long it takes the inner main to run, not the whole program,
|
||||||
|
// including e.g., loading the program into memory or smth.
|
||||||
|
// Also CLOCKS_PER_SEC in POSIX is a constant equal to 1000000.
|
||||||
|
// See: https://stackoverflow.com/questions/10455905/why-is-clocks-per-sec-not-the-actual-number-of-clocks-per-second
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
18
README.md
18
README.md
|
@ -29,15 +29,15 @@ As of now, it may be useful for checking the validity of simple estimations. The
|
||||||
|
|
||||||
## Comparison table
|
## Comparison table
|
||||||
|
|
||||||
| Language | Time | Lines of code |
|
| Language | Time | Lines of code |
|
||||||
|--------------------------|-----------|---------------|
|
|-----------------------------|-----------|---------------|
|
||||||
| C (optimized, 1 thread) | 30ms | 183 |
|
| C (optimized, 16 threads) | 6ms | 183 |
|
||||||
| Nim | 68ms | 84 |
|
| Nim | 68ms | 84 |
|
||||||
| C | 292ms | 149 |
|
| C (naïve implementation) | 292ms | 149 |
|
||||||
| Javascript (NodeJS) | 732ms | 69 |
|
| Javascript (NodeJS) | 732ms | 69 |
|
||||||
| Squiggle | 1,536s | 14 |
|
| Squiggle | 1,536s | 14 |
|
||||||
| R | 7,000s | 49 |
|
| R | 7,000s | 49 |
|
||||||
| Python (CPython) | 16,641s | 56 |
|
| Python (CPython) | 16,641s | 56 |
|
||||||
|
|
||||||
Time measurements taken with the [time](https://man7.org/linux/man-pages/man1/time.1.html) tool, using 1M samples:
|
Time measurements taken with the [time](https://man7.org/linux/man-pages/man1/time.1.html) tool, using 1M samples:
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user