remove old code from samples.c

This commit is contained in:
NunoSempere 2023-06-02 16:05:42 -06:00
parent ff3685766b
commit cdec5b6fce

View File

@ -18,18 +18,6 @@ void array_print(float* array, int length)
printf("\n"); printf("\n");
} }
void array_fill(float* array, int length, float item)
{
int i;
#pragma omp private(i)
{
#pragma omp for
for (i = 0; i < length; i++) {
array[i] = item;
}
}
}
float array_sum(float* array, int length) float array_sum(float* array, int length)
{ {
float output = 0.0; float output = 0.0;
@ -47,159 +35,12 @@ void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
} }
} }
float rand_float(float to, unsigned int* seed) // Split array helpers
{
return ((float)rand_r(seed) / (float)RAND_MAX) * to;
// See: <https://stackoverflow.com/questions/43151361/how-to-create-thread-safe-random-number-generator-in-c-using-rand-r>
// rand() is not thread-safe, as it relies on (shared) hidden state.
}
float ur_normal(unsigned int* seed)
{
float u1 = rand_float(1.0, seed);
float u2 = rand_float(1.0, seed);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
inline float random_uniform(float from, float to, unsigned int* seed)
{
return ((float) rand_r(seed) / (float)RAND_MAX) * (to - from) + from;
}
inline float random_normal(float mean, float sigma, unsigned int* seed)
{
return (mean + sigma * ur_normal(seed));
}
inline float random_lognormal(float logmean, float logsigma, unsigned int* seed)
{
return expf(random_normal(logmean, logsigma, seed));
}
inline float random_to(float low, float high, unsigned int* seed)
{
const float NORMAL95CONFIDENCE = 1.6448536269514722;
float loglow = logf(low);
float loghigh = logf(high);
float logmean = (loglow + loghigh) / 2;
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
return random_lognormal(logmean, logsigma, seed);
}
int split_array_get_my_length(int index, int total_length, int n_threads) int split_array_get_my_length(int index, int total_length, int n_threads)
{ {
return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads); return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
} }
//Old version, don't use it!! Optimized version is called mixture_f. This one is just for display
/*
void mixture(float* dists[], float* weights, int n_dists, float* results)
{
float sum_weights = array_sum(weights, n_dists);
float* normalized_weights = malloc(n_dists * sizeof(float));
for (int i = 0; i < n_dists; i++) {
normalized_weights[i] = weights[i] / sum_weights;
}
float* cummulative_weights = malloc(n_dists * sizeof(float));
array_cumsum(normalized_weights, cummulative_weights, n_dists);
//create var holders
float p1, p2;
int index_found, index_counter, sample_index, i;
#pragma omp parallel private(i, p1, p2, index_found, index_counter, sample_index)
{
#pragma omp for
for (i = 0; i < N; i++) {
p1 = random_uniform(0, 1);
p2 = random_uniform(0, 1);
index_found = 0;
index_counter = 0;
while ((index_found == 0) && (index_counter < n_dists)) {
if (p1 < cummulative_weights[index_counter]) {
index_found = 1;
} else {
index_counter++;
}
}
if (index_found != 0) {
sample_index = (int)(p2 * N);
results[i] = dists[index_counter][sample_index];
} else
printf("This shouldn't be able to happen.\n");
}
}
free(normalized_weights);
free(cummulative_weights);
}
*/
void mixture_f(float (*samplers[])(unsigned int* ), float* weights, int n_dists, float** results, int n_threads)
{
float sum_weights = array_sum(weights, n_dists);
float* normalized_weights = malloc(n_dists * sizeof(float));
for (int i = 0; i < n_dists; i++) {
normalized_weights[i] = weights[i] / sum_weights;
}
float* cummulative_weights = malloc(n_dists * sizeof(float));
array_cumsum(normalized_weights, cummulative_weights, n_dists);
//create var holders
float p1;
int sample_index, i, own_length;
unsigned int* seeds[n_threads];
for(unsigned int i=0; i<n_threads; i++){
seeds[i] = malloc(sizeof(unsigned int));
*seeds[i] = i;
}
#pragma omp parallel private(i, p1, sample_index, own_length)
{
#pragma omp for
for (i = 0; i < n_threads; i++) {
own_length = split_array_get_my_length(i, N, n_threads);
for (int j = 0; j < own_length; j++) {
p1 = random_uniform(0, 1, seeds[i]);
for (int k = 0; k < n_dists; k++) {
if (p1 < cummulative_weights[k]) {
results[i][j] = samplers[k](seeds[i]);
break;
}
}
}
}
}
free(normalized_weights);
free(cummulative_weights);
for(unsigned int i=0; i<n_threads; i++){
free(seeds[i]);
}
}
float sample_0(unsigned int* seed)
{
return 0;
}
float sample_1(unsigned int* seed)
{
return 1;
}
float sample_few(unsigned int* seed)
{
return random_to(1, 3, seed);
}
float sample_many(unsigned int* seed)
{
return random_to(2, 10, seed);
}
void split_array_allocate(float** meta_array, int length, int divide_into) void split_array_allocate(float** meta_array, int length, int divide_into)
{ {
int own_length; int own_length;
@ -239,14 +80,120 @@ float split_array_sum(float** meta_array, int length, int divided_into)
return output; return output;
} }
// Distribution & sampling functions
float rand_float(float to, unsigned int* seed)
{
return ((float)rand_r(seed) / (float)RAND_MAX) * to;
// See: <https://stackoverflow.com/questions/43151361/how-to-create-thread-safe-random-number-generator-in-c-using-rand-r> for why to use rand_r:
// rand() is not thread-safe, as it relies on (shared) hidden state.
}
float ur_normal(unsigned int* seed)
{
float u1 = rand_float(1.0, seed);
float u2 = rand_float(1.0, seed);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
inline float random_uniform(float from, float to, unsigned int* seed)
{
return ((float) rand_r(seed) / (float)RAND_MAX) * (to - from) + from;
}
inline float random_normal(float mean, float sigma, unsigned int* seed)
{
return (mean + sigma * ur_normal(seed));
}
inline float random_lognormal(float logmean, float logsigma, unsigned int* seed)
{
return expf(random_normal(logmean, logsigma, seed));
}
inline float random_to(float low, float high, unsigned int* seed)
{
const float NORMAL95CONFIDENCE = 1.6448536269514722;
float loglow = logf(low);
float loghigh = logf(high);
float logmean = (loglow + loghigh) / 2;
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
return random_lognormal(logmean, logsigma, seed);
}
// Mixture function
void mixture(float (*samplers[])(unsigned int* ), float* weights, int n_dists, float** results, int n_threads)
{
// You can see a simpler version of this function in the git history
// or in C-02-better-algorithm-one-thread/
float sum_weights = array_sum(weights, n_dists);
float* normalized_weights = malloc(n_dists * sizeof(float));
for (int i = 0; i < n_dists; i++) {
normalized_weights[i] = weights[i] / sum_weights;
}
float* cummulative_weights = malloc(n_dists * sizeof(float));
array_cumsum(normalized_weights, cummulative_weights, n_dists);
//create var holders
float p1;
int sample_index, i, own_length;
unsigned int* seeds[n_threads];
for(unsigned int i=0; i<n_threads; i++){
seeds[i] = malloc(sizeof(unsigned int));
*seeds[i] = i;
}
#pragma omp parallel private(i, p1, sample_index, own_length)
{
#pragma omp for
for (i = 0; i < n_threads; i++) {
own_length = split_array_get_my_length(i, N, n_threads);
for (int j = 0; j < own_length; j++) {
p1 = random_uniform(0, 1, seeds[i]);
for (int k = 0; k < n_dists; k++) {
if (p1 < cummulative_weights[k]) {
results[i][j] = samplers[k](seeds[i]);
break;
}
}
}
}
}
free(normalized_weights);
free(cummulative_weights);
for(unsigned int i=0; i<n_threads; i++){
free(seeds[i]);
}
}
// Functions used for the BOTEC.
// Their type has to be the same, as we will be passing them around.
float sample_0(unsigned int* seed)
{
return 0;
}
float sample_1(unsigned int* seed)
{
return 1;
}
float sample_few(unsigned int* seed)
{
return random_to(1, 3, seed);
}
float sample_many(unsigned int* seed)
{
return random_to(2, 10, seed);
}
int main() int main()
{ {
//initialize randomness
srand(time(NULL));
// clock_t start, end;
// start = clock();
// Toy example // Toy example
// Declare variables in play // Declare variables in play
float p_a, p_b, p_c; float p_a, p_b, p_c;
@ -266,16 +213,10 @@ int main()
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 }; float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
float (*samplers[])(unsigned int* ) = { sample_0, sample_1, sample_few, sample_many }; float (*samplers[])(unsigned int* ) = { sample_0, sample_1, sample_few, sample_many };
mixture_f(samplers, weights, n_dists, dist_mixture, n_threads); mixture(samplers, weights, n_dists, dist_mixture, n_threads);
printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N); printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N);
// array_print(dist_mixture[0], N); // array_print(dist_mixture[0], N);
split_array_free(dist_mixture, n_threads); split_array_free(dist_mixture, n_threads);
// end = clock();
// printf("Time (ms): %f\n", ((double)(end - start)) / (CLOCKS_PER_SEC) * 1000);
// ^ Will only measure how long it takes the inner main to run, not the whole program,
// including e.g., loading the program into memory or smth.
// Also CLOCKS_PER_SEC in POSIX is a constant equal to 1000000.
// See: https://stackoverflow.com/questions/10455905/why-is-clocks-per-sec-not-the-actual-number-of-clocks-per-second
return 0; return 0;
} }