use different seeds for different threads
This commit is contained in:
parent
7c907f173d
commit
aa3b406473
|
@ -5,42 +5,40 @@ import "math"
|
|||
import "sync"
|
||||
import rand "math/rand/v2"
|
||||
|
||||
type func64 = func() float64
|
||||
type source = *rand.Rand
|
||||
|
||||
var r source = rand.New(rand.NewPCG(1, 2))
|
||||
type func64 = func(source) float64
|
||||
|
||||
// https://pkg.go.dev/math/rand/v2
|
||||
|
||||
func sample_unit_uniform() float64 {
|
||||
func sample_unit_uniform(r source) float64 {
|
||||
return r.Float64()
|
||||
}
|
||||
|
||||
func sample_unit_normal() float64 {
|
||||
func sample_unit_normal(r source) float64 {
|
||||
return r.NormFloat64()
|
||||
}
|
||||
|
||||
func sample_uniform(start float64, end float64) float64 {
|
||||
return sample_unit_uniform()*(end-start) + start
|
||||
func sample_uniform(start float64, end float64, r source) float64 {
|
||||
return sample_unit_uniform(r)*(end-start) + start
|
||||
}
|
||||
|
||||
func sample_normal(mean float64, sigma float64) float64 {
|
||||
return mean + sample_unit_normal()*sigma
|
||||
func sample_normal(mean float64, sigma float64, r source) float64 {
|
||||
return mean + sample_unit_normal(r)*sigma
|
||||
}
|
||||
|
||||
func sample_lognormal(logmean float64, logstd float64) float64 {
|
||||
return (math.Exp(sample_normal(logmean, logstd)))
|
||||
func sample_lognormal(logmean float64, logstd float64, r source) float64 {
|
||||
return (math.Exp(sample_normal(logmean, logstd, r)))
|
||||
}
|
||||
|
||||
func sample_normal_from_90_ci(low float64, high float64) float64 {
|
||||
func sample_normal_from_90_ci(low float64, high float64, r source) float64 {
|
||||
var normal90 float64 = 1.6448536269514727
|
||||
var mean float64 = (high + low) / 2.0
|
||||
var std float64 = (high - low) / (2.0 * normal90)
|
||||
return sample_normal(mean, std)
|
||||
return sample_normal(mean, std, r)
|
||||
|
||||
}
|
||||
|
||||
func sample_to(low float64, high float64) float64 {
|
||||
func sample_to(low float64, high float64, r source) float64 {
|
||||
// Given a (positive) 90% confidence interval,
|
||||
// returns a sample from a lognorma with a matching 90% c.i.
|
||||
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
||||
|
@ -48,10 +46,10 @@ func sample_to(low float64, high float64) float64 {
|
|||
// Then see code for sample_normal_from_90_ci
|
||||
var loglow float64 = math.Log(low)
|
||||
var loghigh float64 = math.Log(high)
|
||||
return math.Exp(sample_normal_from_90_ci(loglow, loghigh))
|
||||
return math.Exp(sample_normal_from_90_ci(loglow, loghigh, r))
|
||||
}
|
||||
|
||||
func sample_mixture(fs []func64, weights []float64) float64 {
|
||||
func sample_mixture(fs []func64, weights []float64, r source) float64 {
|
||||
|
||||
// fmt.Println("weights initially: ", weights)
|
||||
var sum_weights float64 = 0
|
||||
|
@ -72,7 +70,7 @@ func sample_mixture(fs []func64, weights []float64) float64 {
|
|||
|
||||
for i, cnw := range cumsummed_normalized_weights {
|
||||
if p < cnw {
|
||||
result = fs[i]()
|
||||
result = fs[i](r)
|
||||
flag = 1
|
||||
break
|
||||
}
|
||||
|
@ -80,31 +78,29 @@ func sample_mixture(fs []func64, weights []float64) float64 {
|
|||
// fmt.Println(cumsummed_normalized_weights)
|
||||
|
||||
if flag == 0 {
|
||||
result = fs[len(fs)-1]()
|
||||
result = fs[len(fs)-1](r)
|
||||
}
|
||||
return result
|
||||
|
||||
}
|
||||
|
||||
func slice_fill(xs []float64, fs func64) {
|
||||
func slice_fill(xs []float64, fs func64, r source) {
|
||||
for i := range xs {
|
||||
xs[i] = fs()
|
||||
xs[i] = fs(r)
|
||||
}
|
||||
}
|
||||
|
||||
func main() {
|
||||
|
||||
fmt.Printf("Type of r: %T\n", r)
|
||||
|
||||
var p_a float64 = 0.8
|
||||
var p_b float64 = 0.5
|
||||
var p_c float64 = p_a * p_b
|
||||
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
|
||||
|
||||
sample_0 := func() float64 { return 0 }
|
||||
sample_1 := func() float64 { return 1 }
|
||||
sample_few := func() float64 { return sample_to(1, 3) }
|
||||
sample_many := func() float64 { return sample_to(2, 10) }
|
||||
sample_0 := func(r source) float64 { return 0 }
|
||||
sample_1 := func(r source) float64 { return 1 }
|
||||
sample_few := func(r source) float64 { return sample_to(1, 3, r) }
|
||||
sample_many := func(r source) float64 { return sample_to(2, 10, r) }
|
||||
fs := [4](func64){sample_0, sample_1, sample_few, sample_many}
|
||||
|
||||
var n_samples int = 1_000_000
|
||||
|
@ -115,27 +111,32 @@ func main() {
|
|||
var xs2 = xs[500_000:750_000]
|
||||
var xs3 = xs[750_000:1_000_000]
|
||||
|
||||
model := func() float64 { return sample_mixture(fs[0:], ws[0:]) }
|
||||
model := func(r source) float64 { return sample_mixture(fs[0:], ws[0:], r) }
|
||||
|
||||
var wg sync.WaitGroup
|
||||
|
||||
wg.Add(4)
|
||||
// Note: these should have different randomness functions!!
|
||||
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
slice_fill(xs0, model)
|
||||
var r = rand.New(rand.NewPCG(1, 2))
|
||||
slice_fill(xs0, model, r)
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
slice_fill(xs1, model)
|
||||
var r = rand.New(rand.NewPCG(2, 3))
|
||||
slice_fill(xs1, model, r)
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
slice_fill(xs2, model)
|
||||
var r = rand.New(rand.NewPCG(3, 4))
|
||||
slice_fill(xs2, model, r)
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
slice_fill(xs3, model)
|
||||
var r = rand.New(rand.NewPCG(4, 5))
|
||||
slice_fill(xs3, model, r)
|
||||
}()
|
||||
|
||||
wg.Wait()
|
||||
|
|
Loading…
Reference in New Issue
Block a user