go: savepoint before deleting a few comments
This commit is contained in:
parent
bb1b21bbbb
commit
829781b8a7
BIN
go/squiggle
BIN
go/squiggle
Binary file not shown.
|
@ -5,32 +5,32 @@ import "math"
|
|||
import "sync"
|
||||
import rand "math/rand/v2"
|
||||
|
||||
type source = *rand.Rand
|
||||
type func64 = func(source) float64
|
||||
type src = *rand.Rand
|
||||
type func64 = func(src) float64
|
||||
|
||||
// https://pkg.go.dev/math/rand/v2
|
||||
|
||||
func sample_unit_uniform(r source) float64 {
|
||||
func sample_unit_uniform(r src) float64 {
|
||||
return r.Float64()
|
||||
}
|
||||
|
||||
func sample_unit_normal(r source) float64 {
|
||||
func sample_unit_normal(r src) float64 {
|
||||
return r.NormFloat64()
|
||||
}
|
||||
|
||||
func sample_uniform(start float64, end float64, r source) float64 {
|
||||
func sample_uniform(start float64, end float64, r src) float64 {
|
||||
return sample_unit_uniform(r)*(end-start) + start
|
||||
}
|
||||
|
||||
func sample_normal(mean float64, sigma float64, r source) float64 {
|
||||
func sample_normal(mean float64, sigma float64, r src) float64 {
|
||||
return mean + sample_unit_normal(r)*sigma
|
||||
}
|
||||
|
||||
func sample_lognormal(logmean float64, logstd float64, r source) float64 {
|
||||
func sample_lognormal(logmean float64, logstd float64, r src) float64 {
|
||||
return (math.Exp(sample_normal(logmean, logstd, r)))
|
||||
}
|
||||
|
||||
func sample_normal_from_90_ci(low float64, high float64, r source) float64 {
|
||||
func sample_normal_from_90_ci(low float64, high float64, r src) float64 {
|
||||
var normal90 float64 = 1.6448536269514727
|
||||
var mean float64 = (high + low) / 2.0
|
||||
var std float64 = (high - low) / (2.0 * normal90)
|
||||
|
@ -38,7 +38,7 @@ func sample_normal_from_90_ci(low float64, high float64, r source) float64 {
|
|||
|
||||
}
|
||||
|
||||
func sample_to(low float64, high float64, r source) float64 {
|
||||
func sample_to(low float64, high float64, r src) float64 {
|
||||
// Given a (positive) 90% confidence interval,
|
||||
// returns a sample from a lognorma with a matching 90% c.i.
|
||||
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
||||
|
@ -49,7 +49,7 @@ func sample_to(low float64, high float64, r source) float64 {
|
|||
return math.Exp(sample_normal_from_90_ci(loglow, loghigh, r))
|
||||
}
|
||||
|
||||
func sample_mixture(fs []func64, weights []float64, r source) float64 {
|
||||
func sample_mixture(fs []func64, weights []float64, r src) float64 {
|
||||
|
||||
// fmt.Println("weights initially: ", weights)
|
||||
var sum_weights float64 = 0
|
||||
|
@ -84,25 +84,27 @@ func sample_mixture(fs []func64, weights []float64, r source) float64 {
|
|||
|
||||
}
|
||||
|
||||
func slice_fill(xs []float64, fs func64, r source) {
|
||||
func slice_fill(xs []float64, fs func64, r src) {
|
||||
for i := range xs {
|
||||
xs[i] = fs(r)
|
||||
}
|
||||
}
|
||||
|
||||
func sample_parallel(f func64, n_samples int) []float64 {
|
||||
|
||||
var num_threads = 16
|
||||
var xs = make([]float64, n_samples)
|
||||
var wg sync.WaitGroup
|
||||
var h = n_samples / 16
|
||||
wg.Add(16)
|
||||
for i := range 16 {
|
||||
var h = n_samples / num_threads
|
||||
wg.Add(num_threads)
|
||||
for i := range num_threads {
|
||||
var xs_i = xs[i*h : (i+1)*h]
|
||||
go func() {
|
||||
go func(f func64) {
|
||||
defer wg.Done()
|
||||
var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1)))
|
||||
slice_fill(xs_i, f, r)
|
||||
}()
|
||||
for i := range xs_i {
|
||||
xs_i[i] = f(r)
|
||||
}
|
||||
}(f)
|
||||
}
|
||||
|
||||
wg.Wait()
|
||||
|
@ -117,31 +119,29 @@ func main() {
|
|||
var p_c float64 = p_a * p_b
|
||||
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
|
||||
|
||||
sample_0 := func(r source) float64 { return 0 }
|
||||
sample_1 := func(r source) float64 { return 1 }
|
||||
sample_few := func(r source) float64 { return sample_to(1, 3, r) }
|
||||
sample_many := func(r source) float64 { return sample_to(2, 10, r) }
|
||||
sample_0 := func(r src) float64 { return 0 }
|
||||
sample_1 := func(r src) float64 { return 1 }
|
||||
sample_few := func(r src) float64 { return sample_to(1, 3, r) }
|
||||
sample_many := func(r src) float64 { return sample_to(2, 10, r) }
|
||||
fs := [4](func64){sample_0, sample_1, sample_few, sample_many}
|
||||
|
||||
model := func(r source) float64 { return sample_mixture(fs[0:], ws[0:], r) }
|
||||
var n_samples int = 1_000_000
|
||||
model := func(r src) float64 { return sample_mixture(fs[0:], ws[0:], r) }
|
||||
n_samples := 1_000_000
|
||||
xs := sample_parallel(model, n_samples)
|
||||
|
||||
var avg float64 = 0
|
||||
for _, x := range xs {
|
||||
avg += x
|
||||
}
|
||||
avg = avg / float64(n_samples)
|
||||
fmt.Printf("Average: %v\n", avg)
|
||||
|
||||
/*
|
||||
|
||||
n_samples := 1_000_000
|
||||
var r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
var avg float64 = 0
|
||||
for i := 0; i < n_samples; i++ {
|
||||
avg += sample_mixture(fs[0:], ws[0:])
|
||||
avg += sample_mixture(fs[0:], ws[0:], r)
|
||||
}
|
||||
avg = avg / float64(n_samples)
|
||||
fmt.Printf("Average: %v\n", avg)
|
||||
|
||||
*/
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user