update squiggle version
This commit is contained in:
parent
54bd358f7e
commit
3fb6eb0c0e
|
@ -1,7 +1,7 @@
|
||||||
OUTPUT=./samples
|
OUTPUT=./samples
|
||||||
|
|
||||||
build:
|
build:
|
||||||
gcc -O3 samples.c ./squiggle_c/squiggle.c ./squiggle_c/squiggle_more.c -lm -fopenmp -o $(OUTPUT)
|
gcc -O3 -march=native samples.c ./squiggle_c/squiggle.c ./squiggle_c/squiggle_more.c -lm -fopenmp -o $(OUTPUT)
|
||||||
|
|
||||||
install:
|
install:
|
||||||
rm -r squiggle_c
|
rm -r squiggle_c
|
||||||
|
|
Binary file not shown.
|
@ -3,7 +3,7 @@
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
|
|
||||||
int main()
|
double sampler_result(uint64_t * seed)
|
||||||
{
|
{
|
||||||
double p_a = 0.8;
|
double p_a = 0.8;
|
||||||
double p_b = 0.5;
|
double p_b = 0.5;
|
||||||
|
@ -17,11 +17,12 @@ int main()
|
||||||
int n_dists = 4;
|
int n_dists = 4;
|
||||||
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
||||||
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
|
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
|
||||||
double sampler_result(uint64_t * seed)
|
|
||||||
{
|
|
||||||
return sample_mixture(samplers, weights, n_dists, seed);
|
return sample_mixture(samplers, weights, n_dists, seed);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
|
||||||
int n_samples = 1000 * 1000, n_threads = 16;
|
int n_samples = 1000 * 1000, n_threads = 16;
|
||||||
double* results = malloc((size_t)n_samples * sizeof(double));
|
double* results = malloc((size_t)n_samples * sizeof(double));
|
||||||
sampler_parallel(sampler_result, results, n_threads, n_samples);
|
sampler_parallel(sampler_result, results, n_threads, n_samples);
|
||||||
|
|
|
@ -44,14 +44,13 @@ void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_
|
||||||
|
|
||||||
// uint64_t** seeds = malloc((size_t)n_threads * sizeof(uint64_t*));
|
// uint64_t** seeds = malloc((size_t)n_threads * sizeof(uint64_t*));
|
||||||
seed_cache_box* cache_box = (seed_cache_box*)malloc(sizeof(seed_cache_box) * (size_t)n_threads);
|
seed_cache_box* cache_box = (seed_cache_box*)malloc(sizeof(seed_cache_box) * (size_t)n_threads);
|
||||||
// seed_cache_box cache_box[n_threads];
|
// seed_cache_box cache_box[n_threads]; // we could use the C stack. On normal linux machines, it's 8MB ($ ulimit -s). However, it doesn't quite feel right.
|
||||||
srand(1);
|
srand(1);
|
||||||
for (int i = 0; i < n_threads; i++) {
|
for (int i = 0; i < n_threads; i++) {
|
||||||
// Constraints:
|
// Constraints:
|
||||||
// - xorshift can't start with 0
|
// - xorshift can't start with 0
|
||||||
// - the seeds should be reasonably separated and not correlated
|
// - the seeds should be reasonably separated and not correlated
|
||||||
cache_box[i].seed = (uint64_t)rand() * (UINT64_MAX / RAND_MAX);
|
cache_box[i].seed = (uint64_t)rand() * (UINT64_MAX / RAND_MAX);
|
||||||
// printf("#%ld: %lu\n",i, *seeds[i]);
|
|
||||||
|
|
||||||
// Other initializations tried:
|
// Other initializations tried:
|
||||||
// *seeds[i] = 1 + i;
|
// *seeds[i] = 1 + i;
|
||||||
|
@ -60,22 +59,51 @@ void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_
|
||||||
}
|
}
|
||||||
|
|
||||||
int i;
|
int i;
|
||||||
#pragma omp parallel private(i, quotient)
|
#pragma omp parallel private(i)
|
||||||
{
|
{
|
||||||
#pragma omp for
|
#pragma omp for
|
||||||
for (i = 0; i < n_threads; i++) {
|
for (i = 0; i < n_threads; i++) {
|
||||||
int quotient = n_samples / n_threads;
|
// It's possible I don't need the for, and could instead call omp
|
||||||
|
// in some different way and get the thread number with omp_get_thread_num()
|
||||||
int lower_bound_inclusive = i * quotient;
|
int lower_bound_inclusive = i * quotient;
|
||||||
int upper_bound_not_inclusive = ((i + 1) * quotient); // note the < in the for loop below,
|
int upper_bound_not_inclusive = ((i + 1) * quotient); // note the < in the for loop below,
|
||||||
|
|
||||||
for (int j = lower_bound_inclusive; j < upper_bound_not_inclusive; j++) {
|
for (int j = lower_bound_inclusive; j < upper_bound_not_inclusive; j++) {
|
||||||
results[j] = sampler(&(cache_box[i].seed));
|
results[j] = sampler(&(cache_box[i].seed));
|
||||||
// Could also result in inefficient cache stuff, but hopefully not too often
|
/*
|
||||||
|
t starts at 0 and ends at T
|
||||||
|
at t=0,
|
||||||
|
thread i accesses: results[i*quotient +0],
|
||||||
|
thread i+1 acccesses: results[(i+1)*quotient +0]
|
||||||
|
at t=T
|
||||||
|
thread i accesses: results[(i+1)*quotient -1]
|
||||||
|
thread i+1 acccesses: results[(i+2)*quotient -1]
|
||||||
|
The results[j] that are directly adjacent are
|
||||||
|
results[(i+1)*quotient -1] (accessed by thread i at time T)
|
||||||
|
results[(i+1)*quotient +0] (accessed by thread i+1 at time 0)
|
||||||
|
and these are themselves adjacent to
|
||||||
|
results[(i+1)*quotient -2] (accessed by thread i at time T-1)
|
||||||
|
results[(i+1)*quotient +1] (accessed by thread i+1 at time 2)
|
||||||
|
If T is large enough, which it is, two threads won't access the same
|
||||||
|
cache line at the same time.
|
||||||
|
Pictorially:
|
||||||
|
at t=0 ....i.........I.........
|
||||||
|
at t=T .............i.........I
|
||||||
|
and the two never overlap
|
||||||
|
Note that results[j] is a double, a double has 8 bytes (64 bits)
|
||||||
|
8 doubles fill a cache line of 64 bytes.
|
||||||
|
So we specifically won't get problems as long as n_samples/n_threads > 8
|
||||||
|
n_threads is normally 16, so n_samples > 128
|
||||||
|
Note also that this is only a problem in terms of speed, if n_samples<128
|
||||||
|
the results are still computed, it'll just be slower
|
||||||
|
*/
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (int j = divisor_multiple; j < n_samples; j++) {
|
for (int j = divisor_multiple; j < n_samples; j++) {
|
||||||
results[j] = sampler(&(cache_box[0].seed));
|
results[j] = sampler(&(cache_box[0].seed));
|
||||||
// we can just reuse a seed, this isn't problematic because we are not doing multithreading
|
// we can just reuse a seed,
|
||||||
|
// this isn't problematic because we;ve now stopped doing multithreading
|
||||||
}
|
}
|
||||||
|
|
||||||
free(cache_box);
|
free(cache_box);
|
||||||
|
@ -88,7 +116,7 @@ typedef struct ci_t {
|
||||||
double high;
|
double high;
|
||||||
} ci;
|
} ci;
|
||||||
|
|
||||||
static void swp(int i, int j, double xs[])
|
inline static void swp(int i, int j, double xs[])
|
||||||
{
|
{
|
||||||
double tmp = xs[i];
|
double tmp = xs[i];
|
||||||
xs[i] = xs[j];
|
xs[i] = xs[j];
|
||||||
|
@ -161,18 +189,222 @@ ci array_get_90_ci(double xs[], int n)
|
||||||
return array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
|
return array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
|
||||||
}
|
}
|
||||||
|
|
||||||
ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed)
|
double array_get_median(double xs[], int n)
|
||||||
{
|
{
|
||||||
UNUSED(seed); // don't want to use it right now, but want to preserve ability to do so (e.g., remove parallelism from internals). Also nicer for consistency.
|
int median_k = (int)floor(0.5 * n);
|
||||||
double* xs = malloc((size_t)n * sizeof(double));
|
return quickselect(median_k, xs, n);
|
||||||
sampler_parallel(sampler, xs, 16, n);
|
|
||||||
ci result = array_get_ci(interval, xs, n);
|
|
||||||
free(xs);
|
|
||||||
return result;
|
|
||||||
}
|
}
|
||||||
ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed)
|
|
||||||
|
/* array print: potentially useful for debugging */
|
||||||
|
void array_print(double xs[], int n)
|
||||||
{
|
{
|
||||||
return sampler_get_ci((ci) { .low = 0.05, .high = 0.95 }, sampler, n, seed);
|
printf("[");
|
||||||
|
for (int i = 0; i < n - 1; i++) {
|
||||||
|
printf("%f, ", xs[i]);
|
||||||
|
}
|
||||||
|
printf("%f", xs[n - 1]);
|
||||||
|
printf("]\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
void array_print_stats(double xs[], int n)
|
||||||
|
{
|
||||||
|
ci ci_90 = array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
|
||||||
|
ci ci_80 = array_get_ci((ci) { .low = 0.1, .high = 0.9 }, xs, n);
|
||||||
|
ci ci_50 = array_get_ci((ci) { .low = 0.25, .high = 0.75 }, xs, n);
|
||||||
|
double median = array_get_median(xs, n);
|
||||||
|
double mean = array_mean(xs, n);
|
||||||
|
double std = array_std(xs, n);
|
||||||
|
printf("| Statistic | Value |\n"
|
||||||
|
"| --- | --- |\n"
|
||||||
|
"| Mean | %lf |\n"
|
||||||
|
"| Median | %lf |\n"
|
||||||
|
"| Std | %lf |\n"
|
||||||
|
"| 90%% confidence interval | %lf to %lf |\n"
|
||||||
|
"| 80%% confidence interval | %lf to %lf |\n"
|
||||||
|
"| 50%% confidence interval | %lf to %lf |\n",
|
||||||
|
mean, median, std, ci_90.low, ci_90.high, ci_80.low, ci_80.high, ci_50.low, ci_50.high);
|
||||||
|
}
|
||||||
|
|
||||||
|
void array_print_histogram(double* xs, int n_samples, int n_bins)
|
||||||
|
{
|
||||||
|
// Interface inspired by <https://github.com/red-data-tools/YouPlot>
|
||||||
|
if (n_bins <= 1) {
|
||||||
|
fprintf(stderr, "Number of bins must be greater than 1.\n");
|
||||||
|
return;
|
||||||
|
} else if (n_samples <= 1) {
|
||||||
|
fprintf(stderr, "Number of samples must be higher than 1.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int* bins = (int*)calloc((size_t)n_bins, sizeof(int));
|
||||||
|
if (bins == NULL) {
|
||||||
|
fprintf(stderr, "Memory allocation for bins failed.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the minimum and maximum values from the samples
|
||||||
|
double min_value = xs[0], max_value = xs[0];
|
||||||
|
for (int i = 0; i < n_samples; i++) {
|
||||||
|
if (xs[i] < min_value) {
|
||||||
|
min_value = xs[i];
|
||||||
|
}
|
||||||
|
if (xs[i] > max_value) {
|
||||||
|
max_value = xs[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Avoid division by zero for a single unique value
|
||||||
|
if (min_value == max_value) {
|
||||||
|
max_value++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate bin width
|
||||||
|
double bin_width = (max_value - min_value) / n_bins;
|
||||||
|
|
||||||
|
// Fill the bins with sample counts
|
||||||
|
for (int i = 0; i < n_samples; i++) {
|
||||||
|
int bin_index = (int)((xs[i] - min_value) / bin_width);
|
||||||
|
if (bin_index == n_bins) {
|
||||||
|
bin_index--; // Last bin includes max_value
|
||||||
|
}
|
||||||
|
bins[bin_index]++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate the scaling factor based on the maximum bin count
|
||||||
|
int max_bin_count = 0;
|
||||||
|
for (int i = 0; i < n_bins; i++) {
|
||||||
|
if (bins[i] > max_bin_count) {
|
||||||
|
max_bin_count = bins[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const int MAX_WIDTH = 50; // Adjust this to your terminal width
|
||||||
|
double scale = max_bin_count > MAX_WIDTH ? (double)MAX_WIDTH / max_bin_count : 1.0;
|
||||||
|
|
||||||
|
// Print the histogram
|
||||||
|
for (int i = 0; i < n_bins; i++) {
|
||||||
|
double bin_start = min_value + i * bin_width;
|
||||||
|
double bin_end = bin_start + bin_width;
|
||||||
|
|
||||||
|
int decimalPlaces = 1;
|
||||||
|
if ((0 < bin_width) && (bin_width < 1)) {
|
||||||
|
int magnitude = (int)floor(log10(bin_width));
|
||||||
|
decimalPlaces = -magnitude;
|
||||||
|
decimalPlaces = decimalPlaces > 10 ? 10 : decimalPlaces;
|
||||||
|
}
|
||||||
|
printf("[%*.*f, %*.*f", 4 + decimalPlaces, decimalPlaces, bin_start, 4 + decimalPlaces, decimalPlaces, bin_end);
|
||||||
|
char interval_delimiter = ')';
|
||||||
|
if (i == (n_bins - 1)) {
|
||||||
|
interval_delimiter = ']'; // last bucket is inclusive
|
||||||
|
}
|
||||||
|
printf("%c: ", interval_delimiter);
|
||||||
|
|
||||||
|
int marks = (int)(bins[i] * scale);
|
||||||
|
for (int j = 0; j < marks; j++) {
|
||||||
|
printf("█");
|
||||||
|
}
|
||||||
|
printf(" %d\n", bins[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Free the allocated memory for bins
|
||||||
|
free(bins);
|
||||||
|
}
|
||||||
|
|
||||||
|
void array_print_90_ci_histogram(double* xs, int n_samples, int n_bins)
|
||||||
|
{
|
||||||
|
// Code duplicated from previous function
|
||||||
|
// I'll consider simplifying it at some future point
|
||||||
|
// Possible ideas:
|
||||||
|
// - having only one function that takes any confidence interval?
|
||||||
|
// - having a utility function that is called by both functions?
|
||||||
|
ci ci_90 = array_get_90_ci(xs, n_samples);
|
||||||
|
|
||||||
|
if (n_bins <= 1) {
|
||||||
|
fprintf(stderr, "Number of bins must be greater than 1.\n");
|
||||||
|
return;
|
||||||
|
} else if (n_samples <= 10) {
|
||||||
|
fprintf(stderr, "Number of samples must be higher than 10.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int* bins = (int*)calloc((size_t)n_bins, sizeof(int));
|
||||||
|
if (bins == NULL) {
|
||||||
|
fprintf(stderr, "Memory allocation for bins failed.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
double min_value = ci_90.low, max_value = ci_90.high;
|
||||||
|
|
||||||
|
// Avoid division by zero for a single unique value
|
||||||
|
if (min_value == max_value) {
|
||||||
|
max_value++;
|
||||||
|
}
|
||||||
|
double bin_width = (max_value - min_value) / n_bins;
|
||||||
|
|
||||||
|
// Fill the bins with sample counts
|
||||||
|
int below_min = 0, above_max = 0;
|
||||||
|
for (int i = 0; i < n_samples; i++) {
|
||||||
|
if (xs[i] < min_value) {
|
||||||
|
below_min++;
|
||||||
|
} else if (xs[i] > max_value) {
|
||||||
|
above_max++;
|
||||||
|
} else {
|
||||||
|
int bin_index = (int)((xs[i] - min_value) / bin_width);
|
||||||
|
if (bin_index == n_bins) {
|
||||||
|
bin_index--; // Last bin includes max_value
|
||||||
|
}
|
||||||
|
bins[bin_index]++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate the scaling factor based on the maximum bin count
|
||||||
|
int max_bin_count = 0;
|
||||||
|
for (int i = 0; i < n_bins; i++) {
|
||||||
|
if (bins[i] > max_bin_count) {
|
||||||
|
max_bin_count = bins[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const int MAX_WIDTH = 40; // Adjust this to your terminal width
|
||||||
|
double scale = max_bin_count > MAX_WIDTH ? (double)MAX_WIDTH / max_bin_count : 1.0;
|
||||||
|
|
||||||
|
// Print the histogram
|
||||||
|
int decimalPlaces = 1;
|
||||||
|
if ((0 < bin_width) && (bin_width < 1)) {
|
||||||
|
int magnitude = (int)floor(log10(bin_width));
|
||||||
|
decimalPlaces = -magnitude;
|
||||||
|
decimalPlaces = decimalPlaces > 10 ? 10 : decimalPlaces;
|
||||||
|
}
|
||||||
|
printf("(%*s, %*.*f): ", 6 + decimalPlaces, "-∞", 4 + decimalPlaces, decimalPlaces, min_value);
|
||||||
|
int marks_below_min = (int)(below_min * scale);
|
||||||
|
for (int j = 0; j < marks_below_min; j++) {
|
||||||
|
printf("█");
|
||||||
|
}
|
||||||
|
printf(" %d\n", below_min);
|
||||||
|
for (int i = 0; i < n_bins; i++) {
|
||||||
|
double bin_start = min_value + i * bin_width;
|
||||||
|
double bin_end = bin_start + bin_width;
|
||||||
|
|
||||||
|
printf("[%*.*f, %*.*f", 4 + decimalPlaces, decimalPlaces, bin_start, 4 + decimalPlaces, decimalPlaces, bin_end);
|
||||||
|
char interval_delimiter = ')';
|
||||||
|
if (i == (n_bins - 1)) {
|
||||||
|
interval_delimiter = ']'; // last bucket is inclusive
|
||||||
|
}
|
||||||
|
printf("%c: ", interval_delimiter);
|
||||||
|
|
||||||
|
int marks = (int)(bins[i] * scale);
|
||||||
|
for (int j = 0; j < marks; j++) {
|
||||||
|
printf("█");
|
||||||
|
}
|
||||||
|
printf(" %d\n", bins[i]);
|
||||||
|
}
|
||||||
|
printf("(%*.*f, %*s): ", 4 + decimalPlaces, decimalPlaces, max_value, 6 + decimalPlaces, "+∞");
|
||||||
|
int marks_above_max = (int)(above_max * scale);
|
||||||
|
for (int j = 0; j < marks_above_max; j++) {
|
||||||
|
printf("█");
|
||||||
|
}
|
||||||
|
printf(" %d\n", above_max);
|
||||||
|
|
||||||
|
// Free the allocated memory for bins
|
||||||
|
free(bins);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Algebra manipulations */
|
/* Algebra manipulations */
|
||||||
|
@ -225,216 +457,3 @@ ci convert_lognormal_params_to_ci(lognormal_params y)
|
||||||
ci result = { .low = exp(loglow), .high = exp(loghigh) };
|
ci result = { .low = exp(loglow), .high = exp(loghigh) };
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Scaffolding to handle errors */
|
|
||||||
// We will sample from an arbitrary cdf
|
|
||||||
// and that operation might fail
|
|
||||||
// so we build some scaffolding here
|
|
||||||
|
|
||||||
#define MAX_ERROR_LENGTH 500
|
|
||||||
#define EXIT_ON_ERROR 0
|
|
||||||
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
|
|
||||||
|
|
||||||
typedef struct box_t {
|
|
||||||
int empty;
|
|
||||||
double content;
|
|
||||||
char* error_msg;
|
|
||||||
} box;
|
|
||||||
|
|
||||||
box process_error(const char* error_msg, int should_exit, char* file, int line)
|
|
||||||
{
|
|
||||||
if (should_exit) {
|
|
||||||
printf("%s, @, in %s (%d)", error_msg, file, line);
|
|
||||||
exit(1);
|
|
||||||
} else {
|
|
||||||
char error_msg[MAX_ERROR_LENGTH];
|
|
||||||
snprintf(error_msg, MAX_ERROR_LENGTH, "@, in %s (%d)", file, line); // NOLINT: We are being carefull here by considering MAX_ERROR_LENGTH explicitly.
|
|
||||||
box error = { .empty = 1, .error_msg = error_msg };
|
|
||||||
return error;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Invert an arbitrary cdf at a point */
|
|
||||||
// Version #1:
|
|
||||||
// - input: (cdf: double => double, p)
|
|
||||||
// - output: Box(number|error)
|
|
||||||
box inverse_cdf_double(double cdf(double), double p)
|
|
||||||
{
|
|
||||||
// given a cdf: [-Inf, Inf] => [0,1]
|
|
||||||
// returns a box with either
|
|
||||||
// x such that cdf(x) = p
|
|
||||||
// or an error
|
|
||||||
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
|
|
||||||
|
|
||||||
double low = -1.0;
|
|
||||||
double high = 1.0;
|
|
||||||
|
|
||||||
// 1. Make sure that cdf(low) < p < cdf(high)
|
|
||||||
int interval_found = 0;
|
|
||||||
while ((!interval_found) && (low > -DBL_MAX / 4) && (high < DBL_MAX / 4)) {
|
|
||||||
// for floats, use FLT_MAX instead
|
|
||||||
// Note that this approach is overkill
|
|
||||||
// but it's also the *correct* thing to do.
|
|
||||||
|
|
||||||
int low_condition = (cdf(low) < p);
|
|
||||||
int high_condition = (p < cdf(high));
|
|
||||||
if (low_condition && high_condition) {
|
|
||||||
interval_found = 1;
|
|
||||||
} else if (!low_condition) {
|
|
||||||
low = low * 2;
|
|
||||||
} else if (!high_condition) {
|
|
||||||
high = high * 2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!interval_found) {
|
|
||||||
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
|
|
||||||
} else {
|
|
||||||
|
|
||||||
int convergence_condition = 0;
|
|
||||||
int count = 0;
|
|
||||||
while (!convergence_condition && (count < (INT_MAX / 2))) {
|
|
||||||
double mid = (high + low) / 2;
|
|
||||||
int mid_not_new = (mid == low) || (mid == high);
|
|
||||||
// double width = high - low;
|
|
||||||
// if ((width < 1e-8) || mid_not_new){
|
|
||||||
if (mid_not_new) {
|
|
||||||
convergence_condition = 1;
|
|
||||||
} else {
|
|
||||||
double mid_sign = cdf(mid) - p;
|
|
||||||
if (mid_sign < 0) {
|
|
||||||
low = mid;
|
|
||||||
} else if (mid_sign > 0) {
|
|
||||||
high = mid;
|
|
||||||
} else if (mid_sign == 0) {
|
|
||||||
low = mid;
|
|
||||||
high = mid;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (convergence_condition) {
|
|
||||||
box result = { .empty = 0, .content = low };
|
|
||||||
return result;
|
|
||||||
} else {
|
|
||||||
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Version #2:
|
|
||||||
// - input: (cdf: double => Box(number|error), p)
|
|
||||||
// - output: Box(number|error)
|
|
||||||
box inverse_cdf_box(box cdf_box(double), double p)
|
|
||||||
{
|
|
||||||
// given a cdf: [-Inf, Inf] => Box([0,1])
|
|
||||||
// returns a box with either
|
|
||||||
// x such that cdf(x) = p
|
|
||||||
// or an error
|
|
||||||
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
|
|
||||||
|
|
||||||
double low = -1.0;
|
|
||||||
double high = 1.0;
|
|
||||||
|
|
||||||
// 1. Make sure that cdf(low) < p < cdf(high)
|
|
||||||
int interval_found = 0;
|
|
||||||
while ((!interval_found) && (low > -DBL_MAX / 4) && (high < DBL_MAX / 4)) {
|
|
||||||
// for floats, use FLT_MAX instead
|
|
||||||
// Note that this approach is overkill
|
|
||||||
// but it's also the *correct* thing to do.
|
|
||||||
box cdf_low = cdf_box(low);
|
|
||||||
if (cdf_low.empty) {
|
|
||||||
return PROCESS_ERROR(cdf_low.error_msg);
|
|
||||||
}
|
|
||||||
|
|
||||||
box cdf_high = cdf_box(high);
|
|
||||||
if (cdf_high.empty) {
|
|
||||||
return PROCESS_ERROR(cdf_low.error_msg);
|
|
||||||
}
|
|
||||||
|
|
||||||
int low_condition = (cdf_low.content < p);
|
|
||||||
int high_condition = (p < cdf_high.content);
|
|
||||||
if (low_condition && high_condition) {
|
|
||||||
interval_found = 1;
|
|
||||||
} else if (!low_condition) {
|
|
||||||
low = low * 2;
|
|
||||||
} else if (!high_condition) {
|
|
||||||
high = high * 2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!interval_found) {
|
|
||||||
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
|
|
||||||
} else {
|
|
||||||
|
|
||||||
int convergence_condition = 0;
|
|
||||||
int count = 0;
|
|
||||||
while (!convergence_condition && (count < (INT_MAX / 2))) {
|
|
||||||
double mid = (high + low) / 2;
|
|
||||||
int mid_not_new = (mid == low) || (mid == high);
|
|
||||||
// double width = high - low;
|
|
||||||
if (mid_not_new) {
|
|
||||||
// if ((width < 1e-8) || mid_not_new){
|
|
||||||
convergence_condition = 1;
|
|
||||||
} else {
|
|
||||||
box cdf_mid = cdf_box(mid);
|
|
||||||
if (cdf_mid.empty) {
|
|
||||||
return PROCESS_ERROR(cdf_mid.error_msg);
|
|
||||||
}
|
|
||||||
double mid_sign = cdf_mid.content - p;
|
|
||||||
if (mid_sign < 0) {
|
|
||||||
low = mid;
|
|
||||||
} else if (mid_sign > 0) {
|
|
||||||
high = mid;
|
|
||||||
} else if (mid_sign == 0) {
|
|
||||||
low = mid;
|
|
||||||
high = mid;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (convergence_condition) {
|
|
||||||
box result = { .empty = 0, .content = low };
|
|
||||||
return result;
|
|
||||||
} else {
|
|
||||||
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Sample from an arbitrary cdf */
|
|
||||||
// Before: invert an arbitrary cdf at a point
|
|
||||||
// Now: from an arbitrary cdf, get a sample
|
|
||||||
box sampler_cdf_box(box cdf(double), uint64_t* seed)
|
|
||||||
{
|
|
||||||
double p = sample_unit_uniform(seed);
|
|
||||||
box result = inverse_cdf_box(cdf, p);
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
box sampler_cdf_double(double cdf(double), uint64_t* seed)
|
|
||||||
{
|
|
||||||
double p = sample_unit_uniform(seed);
|
|
||||||
box result = inverse_cdf_double(cdf, p);
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
double sampler_cdf_danger(box cdf(double), uint64_t* seed)
|
|
||||||
{
|
|
||||||
double p = sample_unit_uniform(seed);
|
|
||||||
box result = inverse_cdf_box(cdf, p);
|
|
||||||
if (result.empty) {
|
|
||||||
exit(1);
|
|
||||||
} else {
|
|
||||||
return result.content;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* array print: potentially useful for debugging */
|
|
||||||
void array_print(double xs[], int n)
|
|
||||||
{
|
|
||||||
printf("[");
|
|
||||||
for (int i = 0; i < n - 1; i++) {
|
|
||||||
printf("%f, ", xs[i]);
|
|
||||||
}
|
|
||||||
printf("%f", xs[n - 1]);
|
|
||||||
printf("]\n");
|
|
||||||
}
|
|
||||||
|
|
|
@ -4,15 +4,18 @@
|
||||||
/* Parallel sampling */
|
/* Parallel sampling */
|
||||||
void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples);
|
void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples);
|
||||||
|
|
||||||
/* Get 90% confidence interval */
|
/* Stats */
|
||||||
|
double array_get_median(double xs[], int n);
|
||||||
typedef struct ci_t {
|
typedef struct ci_t {
|
||||||
double low;
|
double low;
|
||||||
double high;
|
double high;
|
||||||
} ci;
|
} ci;
|
||||||
ci array_get_ci(ci interval, double* xs, int n);
|
ci array_get_ci(ci interval, double* xs, int n);
|
||||||
ci array_get_90_ci(double xs[], int n);
|
ci array_get_90_ci(double xs[], int n);
|
||||||
ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed);
|
|
||||||
ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed);
|
void array_print_stats(double xs[], int n);
|
||||||
|
void array_print_histogram(double* xs, int n_samples, int n_bins);
|
||||||
|
void array_print_90_ci_histogram(double* xs, int n, int n_bins);
|
||||||
|
|
||||||
/* Algebra manipulations */
|
/* Algebra manipulations */
|
||||||
|
|
||||||
|
@ -31,24 +34,9 @@ lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params
|
||||||
lognormal_params convert_ci_to_lognormal_params(ci x);
|
lognormal_params convert_ci_to_lognormal_params(ci x);
|
||||||
ci convert_lognormal_params_to_ci(lognormal_params y);
|
ci convert_lognormal_params_to_ci(lognormal_params y);
|
||||||
|
|
||||||
/* Error handling */
|
/* Utilities */
|
||||||
typedef struct box_t {
|
|
||||||
int empty;
|
|
||||||
double content;
|
|
||||||
char* error_msg;
|
|
||||||
} box;
|
|
||||||
#define MAX_ERROR_LENGTH 500
|
|
||||||
#define EXIT_ON_ERROR 0
|
|
||||||
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
|
|
||||||
box process_error(const char* error_msg, int should_exit, char* file, int line);
|
|
||||||
void array_print(double* array, int length);
|
|
||||||
|
|
||||||
/* Inverse cdf */
|
#define THOUSAND 1000
|
||||||
box inverse_cdf_double(double cdf(double), double p);
|
#define MILLION 1000000
|
||||||
box inverse_cdf_box(box cdf_box(double), double p);
|
|
||||||
|
|
||||||
/* Samplers from cdf */
|
|
||||||
box sampler_cdf_double(double cdf(double), uint64_t* seed);
|
|
||||||
box sampler_cdf_box(box cdf(double), uint64_t* seed);
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
Loading…
Reference in New Issue
Block a user