tweak: add code for R and python
This commit is contained in:
parent
fa5d5f11fd
commit
0910c96299
49
R/samples.R
Normal file
49
R/samples.R
Normal file
|
@ -0,0 +1,49 @@
|
||||||
|
# Three simple functions
|
||||||
|
DEFAULT_N = 10000
|
||||||
|
normal <- function (mean, std, n=DEFAULT_N){
|
||||||
|
return(rnorm(n, mean, std))
|
||||||
|
}
|
||||||
|
|
||||||
|
lognormal <- function(meanlog, sdlog, n=DEFAULT_N){
|
||||||
|
return(rlnorm(n, meanlog = meanlog, sdlog = sdlog))
|
||||||
|
}
|
||||||
|
|
||||||
|
to <- function(low, high, n=DEFAULT_N){
|
||||||
|
normal95confidencePoint = 1.6448536269514722
|
||||||
|
logLow = log(low)
|
||||||
|
logHigh = log(high)
|
||||||
|
meanlog = (logLow + logHigh)/2
|
||||||
|
sdlog = (logHigh - logLow) / (2.0 * normal95confidencePoint)
|
||||||
|
return(lognormal(meanlog, sdlog, n))
|
||||||
|
}
|
||||||
|
|
||||||
|
mixture <- function(samples_list, weights_array, n=DEFAULT_N){ # note that this takes a list, not an array
|
||||||
|
normalized_weights = weights_array/sum(weights_array)
|
||||||
|
cummulative_sums = cumsum(normalized_weights)
|
||||||
|
helper_probs = runif(n)
|
||||||
|
results = vector(mode='numeric', length=n)
|
||||||
|
for(i in c(1:n)){
|
||||||
|
helper_which_list = which(cummulative_sums > helper_probs[i])
|
||||||
|
helper_loc = ifelse(is.na(helper_which_list[1]), 1, helper_which_list[1])
|
||||||
|
target_samples = samples_list[[helper_loc]]
|
||||||
|
result = sample(target_samples, 1)
|
||||||
|
results[i] = result
|
||||||
|
}
|
||||||
|
return(results)
|
||||||
|
}
|
||||||
|
|
||||||
|
# Example
|
||||||
|
p_a = 0.8
|
||||||
|
p_b = 0.5
|
||||||
|
p_c = p_a * p_b
|
||||||
|
|
||||||
|
dists = list(c(0), c(1), to(1, 3), to(2, 10))
|
||||||
|
# print(dists)
|
||||||
|
weights = c((1 - p_c), p_c/2, p_c/4, p_c/4)
|
||||||
|
# print(weights)
|
||||||
|
result = mixture(dists, weights)
|
||||||
|
mean_result = mean(result)
|
||||||
|
print(mean_result)
|
||||||
|
|
||||||
|
|
||||||
|
|
6
example.squiggle
Normal file
6
example.squiggle
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
p_a = 0.8
|
||||||
|
p_b = 0.5
|
||||||
|
p_c = p_a * p_b
|
||||||
|
|
||||||
|
result = mx([0, 1, 1 to 3, 2 to 10], [(1 - p_c), p_c/2, p_c/4, p_c/4 ])
|
||||||
|
mean(result)
|
55
python/samples.py
Normal file
55
python/samples.py
Normal file
|
@ -0,0 +1,55 @@
|
||||||
|
# imports
|
||||||
|
import numpy as np
|
||||||
|
rng = np.random.default_rng(123)
|
||||||
|
DEFAULT_N = 100000
|
||||||
|
|
||||||
|
# three simple functions
|
||||||
|
|
||||||
|
|
||||||
|
def normal(mean, std, n=DEFAULT_N):
|
||||||
|
return np.array(rng.normal(mean, std, n))
|
||||||
|
|
||||||
|
|
||||||
|
def lognormal(mean, std, n=DEFAULT_N):
|
||||||
|
return np.array(rng.lognormal(mean, std, n))
|
||||||
|
|
||||||
|
|
||||||
|
def to(low, high, n=DEFAULT_N):
|
||||||
|
normal95confidencePoint = 1.6448536269514722
|
||||||
|
logLow = np.log(low)
|
||||||
|
logHigh = np.log(high)
|
||||||
|
meanlog = (logLow + logHigh)/2
|
||||||
|
sdlog = (logHigh - logLow) / (2.0 * normal95confidencePoint)
|
||||||
|
return lognormal(meanlog, sdlog, n)
|
||||||
|
|
||||||
|
|
||||||
|
def mixture(samples_list, weights_array, n=DEFAULT_N):
|
||||||
|
normalized_weights = weights_array/sum(weights_array)
|
||||||
|
cummulative_sums = np.cumsum(normalized_weights)
|
||||||
|
helper_probs = rng.random(n)
|
||||||
|
results = np.empty(n)
|
||||||
|
for i in range(n):
|
||||||
|
helper_list = [j for j in range(
|
||||||
|
len(cummulative_sums)) if cummulative_sums[j] > helper_probs[i]]
|
||||||
|
if len(helper_list) == 0:
|
||||||
|
helper_loc = 0
|
||||||
|
else:
|
||||||
|
helper_loc = helper_list[0]
|
||||||
|
target_samples = samples_list[helper_loc]
|
||||||
|
result = rng.choice(target_samples, 1)[0]
|
||||||
|
results[i] = result
|
||||||
|
return (results)
|
||||||
|
|
||||||
|
|
||||||
|
# Example
|
||||||
|
p_a = 0.8
|
||||||
|
p_b = 0.5
|
||||||
|
p_c = p_a * p_b
|
||||||
|
|
||||||
|
dists = [[0], [1], to(1, 3), to(2, 10)]
|
||||||
|
# print(dists)
|
||||||
|
weights = np.array([1 - p_c, p_c/2, p_c/4, p_c/4])
|
||||||
|
# print(weights)
|
||||||
|
result = mixture(dists, weights)
|
||||||
|
mean_result = np.mean(result)
|
||||||
|
print(mean_result)
|
Loading…
Reference in New Issue
Block a user