time-to-botec/js/node_modules/@stdlib/math/base/tools/evalrational-compile/README.md

165 lines
3.7 KiB
Markdown
Raw Normal View History

<!--
@license Apache-2.0
Copyright (c) 2018 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# evalrational
> Compile a module for evaluating a [rational function][@stdlib/math/base/tools/evalrational].
<section class="intro">
</section>
<!-- /.intro -->
<section class="usage">
## Usage
```javascript
var compile = require( '@stdlib/math/base/tools/evalrational-compile' );
```
#### compile( P, Q )
Compiles a module `string` containing an exported function which evaluates a [rational function][@stdlib/math/base/tools/evalrational] having coefficients `P` and `Q`.
```javascript
var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];
var str = compile( P, Q );
// returns <string>
```
In the example above, the output `string` would correspond to the following module:
```javascript
'use strict';
// MAIN //
/**
* Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\).
*
* ## Notes
*
* - Coefficients should be sorted in ascending degree.
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
*
* @private
* @param {number} x - value at which to evaluate the rational function
* @returns {number} evaluated rational function
*/
function evalrational( x ) {
var ax;
var s1;
var s2;
if ( x === 0.0 ) {
return -3.0;
}
if ( x < 0.0 ) {
ax = -x;
} else {
ax = x;
}
if ( ax <= 1.0 ) {
s1 = 3.0 + (x * (2.0 + (x * 1.0))); // eslint-disable-line max-len
s2 = -1.0 + (x * (-2.0 + (x * -3.0))); // eslint-disable-line max-len
} else {
x = 1.0 / x;
s1 = 1.0 + (x * (2.0 + (x * 3.0))); // eslint-disable-line max-len
s2 = -3.0 + (x * (-2.0 + (x * -1.0))); // eslint-disable-line max-len
}
return s1 / s2;
}
// EXPORTS //
module.exports = evalrational;
```
The coefficients should be ordered in **ascending** degree, thus matching summation notation.
</section>
<!-- /.usage -->
<section class="notes">
## Notes
- The function is intended for **non-browser** environments for the purpose of generating module files.
</section>
<!-- /.notes -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var compile = require( '@stdlib/math/base/tools/evalrational-compile' );
var sign;
var str;
var P;
var Q;
var i;
// Create two arrays of random coefficients...
P = new Float64Array( 10 );
Q = new Float64Array( 10 );
for ( i = 0; i < P.length; i++ ) {
if ( randu() < 0.5 ) {
sign = -1.0;
} else {
sign = 1.0;
}
P[ i ] = sign * round( randu()*100.0 );
Q[ i ] = sign * round( randu()*100.0 );
}
// Compile a module for evaluating a rational function:
str = compile( P, Q );
console.log( str );
```
</section>
<!-- /.examples -->
<section class="links">
[@stdlib/math/base/tools/evalrational]: https://www.npmjs.com/package/@stdlib/math/tree/main/base/tools/evalrational
</section>
<!-- /.links -->