time-to-botec/js/node_modules/@stdlib/stats/wilcoxon/README.md

380 lines
9.6 KiB
Markdown
Raw Normal View History

<!--
@license Apache-2.0
Copyright (c) 2020 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Wilcoxon Signed Rank Test
> One-sample and paired Wilcoxon signed rank test.
<section class="usage">
## Usage
```javascript
var wilcoxon = require( '@stdlib/stats/wilcoxon' );
```
#### wilcoxon( x\[, y]\[, opts] )
Performs a one-sample t-test for the null hypothesis that the data in [array][mdn-array] or [typed array][mdn-typed-array] `x` is drawn from a distribution that is symmetric around zero (i.e., with median zero).
```javascript
// Differences in plant heights, see Cureton (1967)
var x = [ 6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75 ];
var out = wilcoxon( x );
/* e.g., returns
{
'rejected': true,
'alpha': 0.05,
'pValue': 0.04125976562499978,
'statistic': 96,
// ...
}
*/
```
When [array][mdn-array] or [typed array][mdn-typed-array] `y` is supplied, the function tests whether the paired differences `x - y` come from a distribution that is symmetric around zero (i.e., with median zero).
```javascript
// Patient measurements at first (x) and second (y) visit, see Hollander & Wolfe (1973)
var x = [ 1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30 ];
var y = [ 0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29 ];
var out = wilcoxon( x, y );
/* e.g., returns
{
'rejected': true,
'alpha': 0.05,
'pValue': 0.0390625,
'statistic': 40,
// ...
}
*/
```
The returned object comes with a `.print()` method which when invoked will print a formatted output of the hypothesis test results. `print` accepts a `digits` option that controls the number of decimal digits displayed for the outputs and a `decision` option, which when set to `false` will hide the test decision.
<!-- run-disable -->
```javascript
console.log( out.print() );
/* e.g., =>
Paired Wilcoxon signed rank test
Alternative hypothesis: Median of the difference `x - y` is not equal to 0
pValue: 0.0391
statistic: 40
Test Decision: Reject null in favor of alternative at 5% significance level
*/
```
The `wilcoxon` function accepts the following `options`:
- **alpha**: `number` in the interval `[0,1]` giving the significance level of the hypothesis test. Default: `0.05`.
- **alternative**: Either `two-sided`, `less` or `greater`. Indicates whether the alternative hypothesis is that the mean of `x` is larger than `mu` (`greater`), smaller than `mu` (`less`), or equal to `mu` (`two-sided`). Default: `two-sided`.
- **correction**: continuity correction adjusting the Wilcoxon rank statistic by 0.5 towards the mean when using the normal approximation. Default: `true`.
- **exact**: Determines whether to force use of the exact distribution instead of a normal approximation when there are more than fifty data points. Default: `false`.
- **mu**: `number` denoting the hypothesized median under the null hypothesis. Default: `0`.
- **zeroMethod**: Method governing how zero-differences are handled (`pratt`, `wilcox`, or `zsplit`). Default: `'wilcox'`.
By default, the hypothesis test is carried out at a significance level of `0.05`. To choose a different significance level, set the `alpha` option.
```javascript
var table;
var out;
var arr;
arr = [ 2, 4, 3, 1, 0 ];
out = wilcoxon( arr, {
'alpha': 0.01
});
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 0
pValue: 0.035
statistic: 21
Test Decision: Reject null in favor of alternative at 5% significance level
*/
out = wilcoxon( arr, {
'alpha': 0.1
});
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 0
pValue: 0.035
statistic: 21
Test Decision: Fail to reject null in favor of alternative at 1% significance level
*/
```
To test whether the data comes from a distribution with a median different than zero, set the `mu` option.
```javascript
var arr = [ 4, 4, 6, 6, 5 ];
var out = wilcoxon( arr, {
'mu': 5
});
/* e.g., returns
{
'rejected': false,
'pValue': 1,
'statistic': 0,
// ...
}
*/
```
By default, a two-sided test is performed. To perform either of the one-sided tests, set the `alternative` option to `less` or `greater`.
```javascript
var arr = [ 4, 4, 6, 6, 5 ];
var out = wilcoxon( arr, {
'alternative': 'less'
});
var table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is less than 0
pValue: 0.9853
statistic: 15
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
out = wilcoxon( arr, {
'alternative': 'greater'
});
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is greater than 0
pValue: 0.0284
statistic: 15
Test Decision: Reject null in favor of alternative at 5% significance level
*/
```
By default, all zero-differences are discarded before calculating the ranks. Set `zeroMethod` to `pratt` when you wish differences of zero to be used in the rank calculation but then drop them or to `zsplit` when differences of zero are shall be used in the ranking procedure and the ranks then split between positive and negative ones.
```javascript
var arr = [ 0, 2, 3, -1, -4, 0, 0, 8, 9 ];
var out = wilcoxon( arr, {
'zeroMethod': 'pratt'
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.331,
'statistic': 28,
// ...
}
*/
out = wilcoxon( arr, {
'zeroMethod': 'zsplit'
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.342,
'statistic': 31,
// ...
}
*/
```
By default, the test uses the exact distribution of the rank statistic to calculate the critical values for the test in case of no ties and no zero-differences. Since it is more computationally efficient, starting with fifty observations a normal approximation is employed. If you would like the test to use the correct distribution even for larger samples, set the `exact` option to `true`.
```javascript
var normal = require( '@stdlib/random/base/normal' ).factory;
var rnorm;
var arr;
var out;
var i;
rnorm = normal( 0.0, 4.0, {
'seed': 100
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = rnorm();
}
out = wilcoxon( arr, {
'exact': false
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.422,
'statistic': 2291,
// ...
}
*/
out = wilcoxon( arr, {
'exact': true
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.424,
'statistic': 2291,
// ...
}
*/
```
By default, when using the normal approximation, the test uses a continuity correction, which adjusts the Wilcoxon rank statistic by `0.5` towards the mean. To disable this correction, set `correction` to `false`.
```javascript
var normal = require( '@stdlib/random/base/normal' ).factory;
var rnorm;
var arr;
var out;
var i;
rnorm = normal( 0.0, 4.0, {
'seed': 100
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = rnorm();
}
out = wilcoxon( arr, {
'correction': false
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.421,
'statistic': 2291,
// ...
}
*/
out = wilcoxon( arr, {
'correction': true
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.422,
'statistic': 2291,
// ...
}
*/
```
</section>
<!-- /.usage -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var uniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var wilcoxon = require( '@stdlib/stats/wilcoxon' );
var table;
var runif;
var arr;
var out;
var i;
runif = uniform( -50.0, 50.0, {
'seed': 37827
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = runif();
}
// Test whether distribution is symmetric around zero:
out = wilcoxon( arr );
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 0
pValue: 0.7714
statistic: 2438.5
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
// Test whether distribution has median of five:
out = wilcoxon( arr, {
'mu': 5.0
});
table = out.print();
/* e.g, returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 5
pValue: 0.0529
statistic: 1961.5
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
```
</section>
<!-- /.examples -->
<section class="links">
[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
</section>
<!-- /.links -->