time-to-botec/squiggle/node_modules/@stdlib/blas/base/ddot/docs/repl.txt

120 lines
3.6 KiB
Plaintext
Raw Normal View History

{{alias}}( N, x, strideX, y, strideY )
Computes the dot product of two double-precision floating-point vectors.
The `N`, `strideX`, and `strideY` parameters determine which elements in `x`
and `y` are accessed at runtime.
Indexing is relative to the first index. To introduce an offset, use a typed
array view.
If `N <= 0`, the function returns `0.0`.
Parameters
----------
N: integer
Number of indexed elements.
x: Float64Array
First input array.
strideX: integer
Index increment for `x`.
y: Float64Array
Second input array.
strideY: integer
Index increment for `y`.
Returns
-------
dot: number
The dot product of `x` and `y`.
Examples
--------
// Standard usage:
> var x = new {{alias:@stdlib/array/float64}}( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
> var y = new {{alias:@stdlib/array/float64}}( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
> var dot = {{alias}}( x.length, x, 1, y, 1 )
-5.0
// Strides:
> x = new {{alias:@stdlib/array/float64}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
> y = new {{alias:@stdlib/array/float64}}( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> dot = {{alias}}( N, x, 2, y, -1 )
9.0
// Using view offsets:
> x = new {{alias:@stdlib/array/float64}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
> y = new {{alias:@stdlib/array/float64}}( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
> var x1 = new {{alias:@stdlib/array/float64}}( x.buffer, x.BYTES_PER_ELEMENT*1 );
> var y1 = new {{alias:@stdlib/array/float64}}( y.buffer, y.BYTES_PER_ELEMENT*3 );
> N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> dot = {{alias}}( N, x1, -2, y1, 1 )
128.0
{{alias}}.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Computes the dot product of two double-precision floating-point vectors
using alternative indexing semantics.
While typed array views mandate a view offset based on the underlying
buffer, the `offsetX` and `offsetY` parameters support indexing based on a
starting index.
Parameters
----------
N: integer
Number of indexed elements.
x: Float64Array
First input array.
strideX: integer
Index increment for `x`.
offsetX: integer
Starting index for `x`.
y: Float64Array
Second input array.
strideY: integer
Index increment for `y`.
offsetY: integer
Starting index for `y`.
Returns
-------
dot: number
The dot product of `x` and `y`.
Examples
--------
// Standard usage:
> var x = new {{alias:@stdlib/array/float64}}( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
> var y = new {{alias:@stdlib/array/float64}}( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
> var dot = {{alias}}.ndarray( x.length, x, 1, 0, y, 1, 0 )
-5.0
// Strides:
> x = new {{alias:@stdlib/array/float64}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
> y = new {{alias:@stdlib/array/float64}}( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> dot = {{alias}}.ndarray( N, x, 2, 0, y, 2, 0 )
9.0
// Using offset indices:
> x = new {{alias:@stdlib/array/float64}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
> y = new {{alias:@stdlib/array/float64}}( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
> N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> dot = {{alias}}.ndarray( N, x, -2, x.length-1, y, 1, 3 )
128.0
See Also
--------