time-to-botec/squiggle/node_modules/jstat/test/distribution/beta-test.js

71 lines
2.4 KiB
JavaScript
Raw Normal View History

var vows = require('vows');
var assert = require('assert');
var suite = vows.describe('jStat.distribution');
require('../env.js');
suite.addBatch({
'beta pdf': {
'topic': function() {
return jStat;
},
'check pdf calculation': function(jStat) {
// Non-log form of the Beta pdf
function pdf(x, alpha, beta) {
if (x > 1 || x < 0)
return 0;
return (Math.pow(x, alpha - 1) * Math.pow(1 - x, beta - 1)) /
jStat.betafn(alpha, beta);
}
var tol = 0.0000001;
var args = [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1];
var arg;
for (var i = 0; i < args.length; i++) {
arg = args[i];
assert.epsilon(tol, jStat.beta.pdf(arg, 0.1, 0.1), pdf(arg, 0.1, 0.1));
assert.epsilon(tol, jStat.beta.pdf(arg, 1, 1), pdf(arg, 1, 1));
assert.epsilon(tol, jStat.beta.pdf(arg, 10, 50), pdf(arg, 10, 50));
// Show that the log form of the pdf performs better for
// large parameter values.
assert(!isNaN(jStat.beta.pdf(arg, 1000, 5000)),
'New Beta pdf is NaN for large parameter values.');
assert(isNaN(pdf(arg, 1000, 5000)),
'Old Beta pdf is not NaN for large parameter values.');
}
assert.equal(jStat.beta.pdf(0, 1, 4), 4);
assert.equal(jStat.beta.pdf(1, 4, 1), 4);
assert.equal(jStat.beta.pdf(0.5, 200, 4000), 0);
},
// checked against R code:
// options(digits=10)
// # Using mode definition from: https://en.wikipedia.org/wiki/Beta_distribution
// beta.mode <- function (a, b) {(a-1)/(a+b-2)}
// beta.mode(2.05, 2)
// beta.mode(5, 10)
// beta.mode(3, 3)
'check mode calculation': function(jStat) {
var tol = 0.0000001;
assert.epsilon(tol, jStat.beta.mode(5, 10), 0.3076923077);
assert.epsilon(tol, jStat.beta.mode(2.05, 2), 0.512195122);
assert.epsilon(tol, jStat.beta.mode(3, 3), 0.5);
},
// checked against R's qbeta(p, shape1, shape2, ncp=0, lower.tail=TRUE, log.p=FALSE) from package 'stats':
// options(digits=10)
// qbeta(0.5, 5, 10)
// qbeta(0.5, 2.05, 2)
// qbeta(0.5, 3, 3)
'check median calculation': function(jStat) {
var tol = 0.0000001;
assert.epsilon(tol, jStat.beta.median(5, 10), 0.3257511553);
assert.epsilon(tol, jStat.beta.median(2.05, 2), 0.5072797399);
assert.epsilon(tol, jStat.beta.median(3, 3), 0.5);
}
}
});
suite.export(module);