133 lines
4.2 KiB
JavaScript
133 lines
4.2 KiB
JavaScript
|
/**
|
|||
|
* @license Apache-2.0
|
|||
|
*
|
|||
|
* Copyright (c) 2018 The Stdlib Authors.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
|
|||
|
'use strict';
|
|||
|
|
|||
|
// MODULES //
|
|||
|
|
|||
|
var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives;
|
|||
|
var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' );
|
|||
|
var range = require( './../../base/range' );
|
|||
|
var lowess = require( './lowess.js' );
|
|||
|
var validate = require( './validate.js' );
|
|||
|
|
|||
|
|
|||
|
// FUNCTIONS //
|
|||
|
|
|||
|
/**
|
|||
|
* Comparator function used to sort (x,y)-pairs in ascending order by the first coordinate.
|
|||
|
*
|
|||
|
* @private
|
|||
|
* @param {Array} a - first pair
|
|||
|
* @param {Array} b - second pair
|
|||
|
* @returns {number} difference between `a` and `b`
|
|||
|
*/
|
|||
|
function ascending( a, b ) {
|
|||
|
return a[ 0 ] - b[ 0 ];
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// MAIN //
|
|||
|
|
|||
|
/**
|
|||
|
* Locally-weighted polynomial regression via the LOWESS algorithm.
|
|||
|
*
|
|||
|
* ## References
|
|||
|
*
|
|||
|
* - Cleveland, William S. 1979. "Robust Locally and Smoothing Weighted Regression Scatterplots." _Journal of the American Statistical Association_ 74 (368): 829–36. doi:[10.1080/01621459.1979.10481038](https://doi.org/10.1080/01621459.1979.10481038).
|
|||
|
* - Cleveland, William S. 1981. "Lowess: A program for smoothing scatterplots by robust locally weighted regression." _American Statistician_ 35 (1): 54–55. doi:[10.2307/2683591](https://doi.org/10.2307/2683591).
|
|||
|
*
|
|||
|
* @param {NumericArray} x - ordered x-axis values (abscissa values)
|
|||
|
* @param {NumericArray} y - corresponding y-axis values (ordinate values)
|
|||
|
* @param {Options} options - function options
|
|||
|
* @param {PositiveNumber} [options.f=2/3] - smoother span (proportion of points which influence smoothing at each value)
|
|||
|
* @param {integer} [options.nsteps=3] - number of iterations in the robust fit (fewer iterations translates to faster function execution)
|
|||
|
* @param {NonNegativeNumber} [options.delta] - nonnegative parameter which may be used to reduce the number of computations
|
|||
|
* @param {boolean} [options.sorted=false] - boolean indicating if the input array `x` is already in sorted order
|
|||
|
* @throws {TypeError} first argument must be a numeric array
|
|||
|
* @throws {TypeError} second argument must be a numeric array
|
|||
|
* @throws {Error} arguments `x` and `y` must have the same length
|
|||
|
* @returns {Object} ordered x-values and fitted values
|
|||
|
*/
|
|||
|
function main( x, y, options ) {
|
|||
|
var nsteps;
|
|||
|
var delta;
|
|||
|
var opts;
|
|||
|
var err;
|
|||
|
var xy;
|
|||
|
var f;
|
|||
|
var i;
|
|||
|
var n;
|
|||
|
var r;
|
|||
|
|
|||
|
if ( !isTypedArrayLike( x ) && !isNumberArray( x ) ) {
|
|||
|
throw new TypeError( 'invalid argument. First argument `x` must be a numeric array. Value: `' + x + '`.' );
|
|||
|
}
|
|||
|
if ( !isTypedArrayLike( y ) && !isNumberArray( y ) ) {
|
|||
|
throw new TypeError( 'invalid argument. Second argument `y` must be a numeric array. Value: `' + y + '`.' );
|
|||
|
}
|
|||
|
n = x.length;
|
|||
|
if ( y.length !== n ) {
|
|||
|
throw new Error( 'invalid arguments. Arguments `x` and `y` must have the same length.' );
|
|||
|
}
|
|||
|
opts = {};
|
|||
|
if ( arguments.length > 2 ) {
|
|||
|
err = validate( opts, options );
|
|||
|
if ( err ) {
|
|||
|
throw err;
|
|||
|
}
|
|||
|
}
|
|||
|
// Input data has to be sorted:
|
|||
|
if ( opts.sorted !== true ) {
|
|||
|
// Copy to prevent mutation and sort by x:
|
|||
|
xy = new Array( n );
|
|||
|
for ( i = 0; i < n; i++ ) {
|
|||
|
xy[ i ] = [ x[ i ], y[ i ] ];
|
|||
|
}
|
|||
|
xy.sort( ascending ); // TODO: Revisit once we have function for sorting multiple arrays by the elements of one of the arrays
|
|||
|
x = new Array( n );
|
|||
|
y = new Array( n );
|
|||
|
for ( i = 0; i < n; i++ ) {
|
|||
|
x[ i ] = xy[ i ][ 0 ];
|
|||
|
y[ i ] = xy[ i ][ 1 ];
|
|||
|
}
|
|||
|
}
|
|||
|
if ( opts.nsteps === void 0 ) {
|
|||
|
nsteps = 3;
|
|||
|
} else {
|
|||
|
nsteps = opts.nsteps;
|
|||
|
}
|
|||
|
if ( opts.f === void 0 ) {
|
|||
|
f = 2.0/3.0;
|
|||
|
} else {
|
|||
|
f = opts.f;
|
|||
|
}
|
|||
|
if ( opts.delta === void 0 ) {
|
|||
|
r = range( n, x, 1 );
|
|||
|
delta = 0.01 * r;
|
|||
|
} else {
|
|||
|
delta = opts.delta;
|
|||
|
}
|
|||
|
return lowess( x, y, n, f, nsteps, delta );
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// EXPORTS //
|
|||
|
|
|||
|
module.exports = main;
|