175 lines
6.0 KiB
Markdown
175 lines
6.0 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# incrvmr
|
||
|
|
||
|
> Compute a [variance-to-mean ratio][variance-to-mean-ratio] (VMR) incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The [unbiased sample variance][sample-variance] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" alt="Equation for the unbiased sample variance."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" data-equation="eq:unbiased_sample_variance">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7fe559e94716008fb414ec7c6b3d0e3e1194f2ba/lib/node_modules/@stdlib/stats/incr/vmr/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for the unbiased sample variance.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
and the [arithmetic mean][arithmetic-mean] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86f8c49b0e95ee794f0b098b8d17444c0cbeea0a/lib/node_modules/@stdlib/stats/incr/vmr/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
The [variance-to-mean ratio][variance-to-mean-ratio] (VMR) is thus defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:variance_to_mean_ratio" align="center" raw="D = \frac{s^2}{\bar{x}}" alt="Equation for the variance-to-mean ratio (VMR)."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="D = \frac{s^2}{\bar{x}}" data-equation="eq:variance_to_mean_ratio">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86f8c49b0e95ee794f0b098b8d17444c0cbeea0a/lib/node_modules/@stdlib/stats/incr/vmr/docs/img/equation_variance_to_mean_ratio.svg" alt="Equation for the variance-to-mean ratio (VMR).">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var incrvmr = require( '@stdlib/stats/incr/vmr' );
|
||
|
```
|
||
|
|
||
|
#### incrvmr( \[mean] )
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes a [variance-to-mean ratio][variance-to-mean-ratio].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrvmr();
|
||
|
```
|
||
|
|
||
|
If the mean is already known, provide a `mean` argument.
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrvmr( 3.0 );
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[x] )
|
||
|
|
||
|
If provided an input value `x`, the accumulator function returns an updated accumulated value. If not provided an input value `x`, the accumulator function returns the current accumulated value.
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrvmr();
|
||
|
|
||
|
var D = accumulator( 2.0 );
|
||
|
// returns 0.0
|
||
|
|
||
|
D = accumulator( 1.0 ); // => s^2 = ((2-1.5)^2+(1-1.5)^2) / (2-1)
|
||
|
// returns ~0.33
|
||
|
|
||
|
D = accumulator( 3.0 ); // => s^2 = ((2-2)^2+(1-2)^2+(3-2)^2) / (3-1)
|
||
|
// returns 0.5
|
||
|
|
||
|
D = accumulator();
|
||
|
// returns 0.5
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
||
|
|
||
|
- The following table summarizes how to interpret the [variance-to-mean ratio][variance-to-mean-ratio]:
|
||
|
|
||
|
| VMR | Description | Example Distribution |
|
||
|
| :---------------: | :-------------: | :--------------------------: |
|
||
|
| 0 | not dispersed | constant |
|
||
|
| 0 < VMR < 1 | under-dispersed | binomial |
|
||
|
| 1 | -- | Poisson |
|
||
|
| >1 | over-dispersed | geometric, negative-binomial |
|
||
|
|
||
|
Accordingly, one can use the [variance-to-mean ratio][variance-to-mean-ratio] to assess whether observed data can be modeled as a Poisson process. When observed data is "under-dispersed", observed data may be more regular than as would be the case for a Poisson process. When observed data is "over-dispersed", observed data may contain clusters (i.e., clumped, concentrated data).
|
||
|
|
||
|
- The [variance-to-mean ratio][variance-to-mean-ratio] is typically computed on nonnegative values. The measure may lack meaning for data which can assume both positive and negative values.
|
||
|
|
||
|
- The [variance-to-mean ratio][variance-to-mean-ratio] is also known as the **index of dispersion**, **dispersion index**, **coefficient of dispersion**, and **relative variance**.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var incrvmr = require( '@stdlib/stats/incr/vmr' );
|
||
|
|
||
|
var accumulator;
|
||
|
var v;
|
||
|
var i;
|
||
|
|
||
|
// Initialize an accumulator:
|
||
|
accumulator = incrvmr();
|
||
|
|
||
|
// For each simulated datum, update the variance-to-mean ratio...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
v = randu() * 100.0;
|
||
|
accumulator( v );
|
||
|
}
|
||
|
console.log( accumulator() );
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[variance-to-mean-ratio]: https://en.wikipedia.org/wiki/Index_of_dispersion
|
||
|
|
||
|
[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
|
||
|
|
||
|
[sample-variance]: https://en.wikipedia.org/wiki/Variance
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|