193 lines
5.8 KiB
Markdown
193 lines
5.8 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# incrmmeanvar
|
||
|
|
||
|
> Compute a moving [arithmetic mean][arithmetic-mean] and [unbiased sample variance][sample-variance] incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
For a window of size `W`, the [arithmetic mean][arithmetic-mean] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i" alt="Equation for the arithmetic mean."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i" data-equation="eq:arithmetic_mean">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@c8c3c87eeab590bfdff924ec0fb269fb33a7de2b/lib/node_modules/@stdlib/stats/incr/mmeanvar/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
and the [unbiased sample variance][sample-variance] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2" alt="Equation for the unbiased sample variance."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="s^2 = \frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2" data-equation="eq:unbiased_sample_variance">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@563a8587d936008c82db675be84f8ce1474fee27/lib/node_modules/@stdlib/stats/incr/mmeanvar/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for the unbiased sample variance.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var incrmmeanvar = require( '@stdlib/stats/incr/mmeanvar' );
|
||
|
```
|
||
|
|
||
|
#### incrmmeanvar( \[out,] window )
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes a moving [arithmetic mean][arithmetic-mean] and [unbiased sample variance][sample-variance]. The `window` parameter defines the number of values over which to compute the moving [arithmetic mean][arithmetic-mean] and [unbiased sample variance][sample-variance].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmmeanvar( 3 );
|
||
|
```
|
||
|
|
||
|
By default, the returned accumulator `function` returns the accumulated values as a two-element `array`. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.
|
||
|
|
||
|
```javascript
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
|
||
|
var accumulator = incrmmeanvar( new Float64Array( 2 ), 3 );
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[x] )
|
||
|
|
||
|
If provided an input value `x`, the accumulator function returns updated accumulated values. If not provided an input value `x`, the accumulator function returns the current accumulated values.
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmmeanvar( 3 );
|
||
|
|
||
|
var out = accumulator();
|
||
|
// returns null
|
||
|
|
||
|
// Fill the window...
|
||
|
out = accumulator( 2.0 ); // [2.0]
|
||
|
// returns [ 2.0, 0.0 ]
|
||
|
|
||
|
out = accumulator( 1.0 ); // [2.0, 1.0]
|
||
|
// returns [ 1.5, 0.5 ]
|
||
|
|
||
|
out = accumulator( 3.0 ); // [2.0, 1.0, 3.0]
|
||
|
// returns [ 2.0, 1.0 ]
|
||
|
|
||
|
// Window begins sliding...
|
||
|
out = accumulator( -7.0 ); // [1.0, 3.0, -7.0]
|
||
|
// returns [ -1.0, 28.0 ]
|
||
|
|
||
|
out = accumulator( -5.0 ); // [3.0, -7.0, -5.0]
|
||
|
// returns [ -3.0, 28.0 ]
|
||
|
|
||
|
out = accumulator();
|
||
|
// returns [ -3.0, 28.0 ]
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- Input values are **not** type checked. If provided `NaN`, the accumulated values are `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
||
|
- As `W` values are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var ArrayBuffer = require( '@stdlib/array/buffer' );
|
||
|
var incrmmeanvar = require( '@stdlib/stats/incr/mmeanvar' );
|
||
|
|
||
|
var offset;
|
||
|
var acc;
|
||
|
var buf;
|
||
|
var out;
|
||
|
var mv;
|
||
|
var N;
|
||
|
var v;
|
||
|
var i;
|
||
|
var j;
|
||
|
|
||
|
// Define the number of accumulators:
|
||
|
N = 5;
|
||
|
|
||
|
// Create an array buffer for storing accumulator output:
|
||
|
buf = new ArrayBuffer( N*2*8 ); // 8 bytes per element
|
||
|
|
||
|
// Initialize accumulators:
|
||
|
acc = [];
|
||
|
for ( i = 0; i < N; i++ ) {
|
||
|
// Compute the byte offset:
|
||
|
offset = i * 2 * 8; // stride=2, bytes_per_element=8
|
||
|
|
||
|
// Create a new view for storing accumulated values:
|
||
|
out = new Float64Array( buf, offset, 2 );
|
||
|
|
||
|
// Initialize an accumulator which will write results to the view:
|
||
|
acc.push( incrmmeanvar( out, 5 ) );
|
||
|
}
|
||
|
|
||
|
// Simulate data and update the moving sample means and variances...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
for ( j = 0; j < N; j++ ) {
|
||
|
v = randu() * 100.0 * (j+1);
|
||
|
acc[ j ]( v );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Print the final results:
|
||
|
console.log( 'Mean\tVariance' );
|
||
|
for ( i = 0; i < N; i++ ) {
|
||
|
mv = acc[ i ]();
|
||
|
console.log( '%d\t%d', mv[ 0 ].toFixed( 3 ), mv[ 1 ].toFixed( 3 ) );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
|
||
|
|
||
|
[sample-variance]: https://en.wikipedia.org/wiki/Variance
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|