257 lines
10 KiB
Markdown
257 lines
10 KiB
Markdown
|
<!--
|
|||
|
|
|||
|
@license Apache-2.0
|
|||
|
|
|||
|
Copyright (c) 2018 The Stdlib Authors.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
|
|||
|
-->
|
|||
|
|
|||
|
# incrmgrubbs
|
|||
|
|
|||
|
> Moving [Grubbs' test][grubbs-test] for outliers.
|
|||
|
|
|||
|
<section class="intro">
|
|||
|
|
|||
|
[Grubbs' test][grubbs-test] (also known as the **maximum normalized residual test** or **extreme studentized deviate test**) is a statistical test used to detect outliers in a univariate dataset assumed to come from a normally distributed population. [Grubbs' test][grubbs-test] is defined for the hypothesis:
|
|||
|
|
|||
|
- **H_0**: the dataset does **not** contain outliers.
|
|||
|
- **H_1**: the dataset contains **exactly** one outlier.
|
|||
|
|
|||
|
For a window of size `W`, the [Grubbs' test][grubbs-test] statistic for a two-sided alternative hypothesis is defined as
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:grubbs_test_statistic" align="center" raw="G = \frac{\max_{i=0,\ldots,W-1} |Y_i - \bar{Y}|}{s}" alt="Grubbs' test statistic."> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="G = \frac{\max_{i=0,\ldots,W-1} |Y_i - \bar{Y}|}{s}" data-equation="eq:grubbs_test_statistic">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d157db87026794d6fab579039be09a8916cad4e0/lib/node_modules/@stdlib/stats/incr/mgrubbs/docs/img/equation_grubbs_test_statistic.svg" alt="Grubbs' test statistic.">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
where `s` is the sample standard deviation. The [Grubbs test][grubbs-test] statistic is thus the largest absolute deviation from the sample mean in units of the sample standard deviation.
|
|||
|
|
|||
|
The [Grubbs' test][grubbs-test] statistic for the alternative hypothesis that the minimum value is an outlier is defined as
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:grubbs_test_statistic_min" align="center" raw="G = \frac{\bar{Y} - Y_{\textrm{min}}}{s}" alt="Grubbs' test statistic for testing whether the minimum value is an outlier."> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="G = \frac{\bar{Y} - Y_{\textrm{min}}}{s}" data-equation="eq:grubbs_test_statistic_min">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d157db87026794d6fab579039be09a8916cad4e0/lib/node_modules/@stdlib/stats/incr/mgrubbs/docs/img/equation_grubbs_test_statistic_min.svg" alt="Grubbs' test statistic for testing whether the minimum value is an outlier.">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
The [Grubbs' test][grubbs-test] statistic for the alternative hypothesis that the maximum value is an outlier is defined as
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:grubbs_test_statistic_max" align="center" raw="G = \frac{Y_{\textrm{max}} - \bar{Y}}{s}" alt="Grubbs' test statistic for testing whether the maximum value is an outlier."> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="G = \frac{Y_{\textrm{max}} - \bar{Y}}{s}" data-equation="eq:grubbs_test_statistic_max">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d157db87026794d6fab579039be09a8916cad4e0/lib/node_modules/@stdlib/stats/incr/mgrubbs/docs/img/equation_grubbs_test_statistic_max.svg" alt="Grubbs' test statistic for testing whether the maximum value is an outlier.">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
For a two-sided test, the hypothesis that a dataset does **not** contain an outlier is rejected at significance level α if
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:grubbs_test_two_sided" align="center" raw="G > \frac{W-1}{\sqrt{W}} \sqrt{\frac{t^2_{\alpha/(2W),W-2}}{W - 2 + t^2_{\alpha/(2W),W-2}}}" alt="Two-sided Grubbs' test."> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="G > \frac{W-1}{\sqrt{W}} \sqrt{\frac{t^2_{\alpha/(2W),W-2}}{W - 2 + t^2_{\alpha/(2W),W-2}}}" data-equation="eq:grubbs_test_two_sided">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d157db87026794d6fab579039be09a8916cad4e0/lib/node_modules/@stdlib/stats/incr/mgrubbs/docs/img/equation_grubbs_test_two_sided.svg" alt="Two-sided Grubbs' test.">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
where `t` denotes the upper critical value of the _t_-distribution with `W-2` degrees of freedom and a significance level of `α/(2W)`.
|
|||
|
|
|||
|
For a one-sided test, the hypothesis that a dataset does **not** contain an outlier is rejected at significance level α if
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:grubbs_test_one_sided" align="center" raw="G > \frac{W-1}{\sqrt{W}} \sqrt{\frac{t^2_{\alpha/W,W-2}}{W - 2 + t^2_{\alpha/W,W-2}}}" alt="One-sided Grubbs' test."> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="G > \frac{W-1}{\sqrt{W}} \sqrt{\frac{t^2_{\alpha/W,W-2}}{W - 2 + t^2_{\alpha/W,W-2}}}" data-equation="eq:grubbs_test_one_sided">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d157db87026794d6fab579039be09a8916cad4e0/lib/node_modules/@stdlib/stats/incr/mgrubbs/docs/img/equation_grubbs_test_one_sided.svg" alt="One-sided Grubbs' test.">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
where `t` denotes the upper critical value of the _t_-distribution with `W-2` degrees of freedom and a significance level of `α/W`.
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.intro -->
|
|||
|
|
|||
|
<section class="usage">
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
```javascript
|
|||
|
var incrmgrubbs = require( '@stdlib/stats/incr/mgrubbs' );
|
|||
|
```
|
|||
|
|
|||
|
#### incrmgrubbs( window\[, options] )
|
|||
|
|
|||
|
Returns an accumulator `function` which incrementally performs [Grubbs' test][grubbs-test] for outliers. The `window` parameter defines the number of values over which to perform [Grubbs' test][grubbs-test].
|
|||
|
|
|||
|
```javascript
|
|||
|
var accumulator = incrmgrubbs( 20 );
|
|||
|
```
|
|||
|
|
|||
|
The function accepts the following `options`:
|
|||
|
|
|||
|
- **alpha**: significance level. Default: `0.05`.
|
|||
|
|
|||
|
- **alternative**: alternative hypothesis. The option may be one of the following values:
|
|||
|
|
|||
|
- `'two-sided'`: test whether the minimum or maximum value is an outlier.
|
|||
|
- `'min'`: test whether the minimum value is an outlier.
|
|||
|
- `'max'`: test whether the maximum value is an outlier.
|
|||
|
|
|||
|
Default: `'two-sided'`.
|
|||
|
|
|||
|
#### accumulator( \[x] )
|
|||
|
|
|||
|
If provided an input value `x`, the accumulator function returns updated test results. If not provided an input value `x`, the accumulator function returns the current test results.
|
|||
|
|
|||
|
```javascript
|
|||
|
var rnorm = require( '@stdlib/random/base/normal' );
|
|||
|
|
|||
|
var accumulator = incrmgrubbs( 3 );
|
|||
|
|
|||
|
var results = accumulator( rnorm( 10.0, 5.0 ) );
|
|||
|
// returns null
|
|||
|
|
|||
|
results = accumulator( rnorm( 10.0, 5.0 ) );
|
|||
|
// returns null
|
|||
|
|
|||
|
results = accumulator( rnorm( 10.0, 5.0 ) );
|
|||
|
// returns <Object>
|
|||
|
|
|||
|
results = accumulator();
|
|||
|
// returns <Object>
|
|||
|
```
|
|||
|
|
|||
|
The accumulator function returns an `object` having the following fields:
|
|||
|
|
|||
|
- **rejected**: boolean indicating whether the null hypothesis should be rejected.
|
|||
|
- **alpha**: significance level.
|
|||
|
- **criticalValue**: critical value.
|
|||
|
- **statistic**: test statistic.
|
|||
|
- **df**: degrees of freedom.
|
|||
|
- **mean**: sample mean.
|
|||
|
- **sd**: corrected sample standard deviation.
|
|||
|
- **min**: minimum value.
|
|||
|
- **max**: maximum value.
|
|||
|
- **alt**: alternative hypothesis.
|
|||
|
- **method**: method name.
|
|||
|
- **print**: method for pretty-printing test output.
|
|||
|
|
|||
|
The `print` method accepts the following options:
|
|||
|
|
|||
|
- **digits**: number of digits after the decimal point. Default: `4`.
|
|||
|
- **decision**: `boolean` indicating whether to print the test decision. Default: `true`.
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.usage -->
|
|||
|
|
|||
|
<section class="notes">
|
|||
|
|
|||
|
## Notes
|
|||
|
|
|||
|
- [Grubbs' test][grubbs-test] **assumes** that data is normally distributed. Accordingly, one should first **verify** that the data can be _reasonably_ approximated by a normal distribution before applying the [Grubbs' test][grubbs-test].
|
|||
|
- The minimum `window` size is `3`. In general, the larger the `window`, the more robust outlier detection will be. However, larger windows entail increased memory consumption.
|
|||
|
- Until `window` values have been provided, the accumulator returns `null`.
|
|||
|
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated test statistic is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.notes -->
|
|||
|
|
|||
|
<section class="examples">
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
<!-- eslint no-undef: "error" -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var sensorData = require( '@stdlib/datasets/suthaharan-single-hop-sensor-network' );
|
|||
|
var incrmgrubbs = require( '@stdlib/stats/incr/mgrubbs' );
|
|||
|
|
|||
|
var data;
|
|||
|
var opts;
|
|||
|
var acc;
|
|||
|
var N;
|
|||
|
var r;
|
|||
|
var i;
|
|||
|
|
|||
|
// Get a test dataset:
|
|||
|
data = sensorData();
|
|||
|
N = 0;
|
|||
|
for ( i = 0; i < data.length; i++ ) {
|
|||
|
if ( data[ i ].mote_id === 1 ) {
|
|||
|
N += 1;
|
|||
|
data[ i ] = data[ i ].temperature;
|
|||
|
}
|
|||
|
}
|
|||
|
data.length = N;
|
|||
|
|
|||
|
// Create a new accumulator which analyzes the last 5 minutes of data:
|
|||
|
opts = {
|
|||
|
'alternative': 'two-sided'
|
|||
|
};
|
|||
|
acc = incrmgrubbs( 60, opts );
|
|||
|
|
|||
|
// Update the accumulator:
|
|||
|
for ( i = 0; i < data.length; i++ ) {
|
|||
|
r = acc( data[ i ] );
|
|||
|
if ( r && r.rejected ) {
|
|||
|
console.log( 'Index: %d', i );
|
|||
|
console.log( '' );
|
|||
|
console.log( r.print() );
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.examples -->
|
|||
|
|
|||
|
<section class="references">
|
|||
|
|
|||
|
* * *
|
|||
|
|
|||
|
## References
|
|||
|
|
|||
|
- Grubbs, Frank E. 1950. "Sample Criteria for Testing Outlying Observations." _The Annals of Mathematical Statistics_ 21 (1). The Institute of Mathematical Statistics: 27–58. doi:[10.1214/aoms/1177729885][@grubbs:1950a].
|
|||
|
- Grubbs, Frank E. 1969. "Procedures for Detecting Outlying Observations in Samples." _Technometrics_ 11 (1). Taylor & Francis: 1–21. doi:[10.1080/00401706.1969.10490657][@grubbs:1969a].
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.references -->
|
|||
|
|
|||
|
<section class="links">
|
|||
|
|
|||
|
[grubbs-test]: https://en.wikipedia.org/wiki/Grubbs%27_test_for_outliers
|
|||
|
|
|||
|
[@grubbs:1950a]: https://doi.org/10.1214/aoms/1177729885
|
|||
|
|
|||
|
[@grubbs:1969a]: https://doi.org/10.1080/00401706.1969.10490657
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.links -->
|