135 lines
3.7 KiB
Markdown
135 lines
3.7 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# increwvariance
|
||
|
|
||
|
> Compute an [exponentially weighted variance][moving-average] incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
An [exponentially weighted variance][moving-average] can be defined recursively as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:exponentially_weighted_variance" align="center" raw="S_n = \begin{cases} 0 & \textrm{if}\ n = 0 \\ (1 - \alpha) (S_{n-1} + \alpha(x_n - \mu_{n-1})^2) & \textrm{if}\ n > 0 \end{cases}" alt="Recursive definition for computing an exponentially weighted variance."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="S_n = \begin{cases} 0 & \textrm{if}\ n = 0 \\ (1 - \alpha) (S_{n-1} + \alpha(x_n - \mu_{n-1})^2) & \textrm{if}\ n > 0 \end{cases}" data-equation="eq:exponentially_weighted_variance">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@12be48682a7c25918504f886cbb80051c6ec8240/lib/node_modules/@stdlib/stats/incr/ewvariance/docs/img/equation_exponentially_weighted_variance.svg" alt="Recursive definition for computing an exponentially weighted variance.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where `μ` is the [exponentially weighted mean][@stdlib/stats/incr/ewmean].
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var increwvariance = require( '@stdlib/stats/incr/ewvariance' );
|
||
|
```
|
||
|
|
||
|
#### increwvariance( alpha )
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes an [exponentially weighted variance][moving-average], where `alpha` is a smoothing factor between `0` and `1`.
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = increwvariance( 0.5 );
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[x] )
|
||
|
|
||
|
If provided an input value `x`, the accumulator function returns an updated variance. If not provided an input value `x`, the accumulator function returns the current variance.
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = increwvariance( 0.5 );
|
||
|
|
||
|
var v = accumulator();
|
||
|
// returns null
|
||
|
|
||
|
v = accumulator( 2.0 );
|
||
|
// returns 0.0
|
||
|
|
||
|
v = accumulator( 1.0 );
|
||
|
// returns 0.25
|
||
|
|
||
|
v = accumulator( 3.0 );
|
||
|
// returns 0.6875
|
||
|
|
||
|
v = accumulator();
|
||
|
// returns 0.6875
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var increwvariance = require( '@stdlib/stats/incr/ewvariance' );
|
||
|
|
||
|
var accumulator;
|
||
|
var v;
|
||
|
var i;
|
||
|
|
||
|
// Initialize an accumulator:
|
||
|
accumulator = increwvariance( 0.5 );
|
||
|
|
||
|
// For each simulated datum, update the exponentially weighted variance...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
v = randu() * 100.0;
|
||
|
accumulator( v );
|
||
|
}
|
||
|
console.log( accumulator() );
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[moving-average]: https://en.wikipedia.org/wiki/Moving_average
|
||
|
|
||
|
[@stdlib/stats/incr/ewmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/incr/ewmean
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|